

Digital Logic Circuits

Finite State Machines

[CS-173 Fundamentals of Digital Systems](#)

Mirjana Stojilović

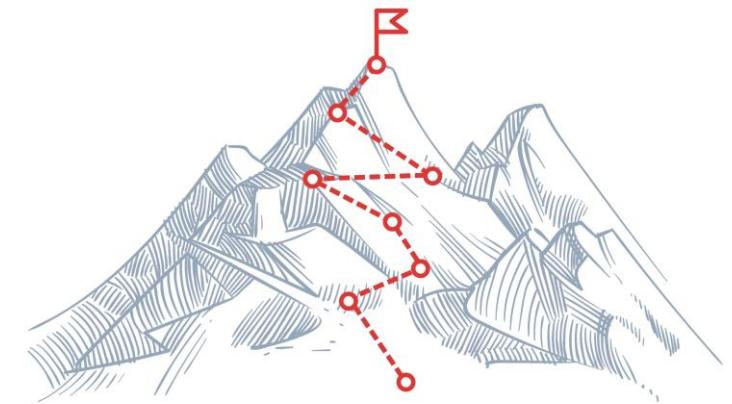
Spring 2025

Previously on FDS

Memory

Previously

- **2-to- 2^n Binary decoders**
 - Defined the functionality
 - Used Verilog **conditional operator** to model them
- Learned what **memories** are and how to build them with DFFs
 - **Two-dimensional arrays** of DFFs
 - **Address** port for indexing the row (i.e., data word)
 - Used 2-to- 2^n binary decoder to activate one enable signal per row
 - **Access protocol**: when/how to read and when/how to write
 - Modeled memory as a two-dimensional array of DFFs in Verilog
 - Learned how to use **Verilog parameters** to be able to instantiate memories with various configurations (e.g., number of rows or data word width)

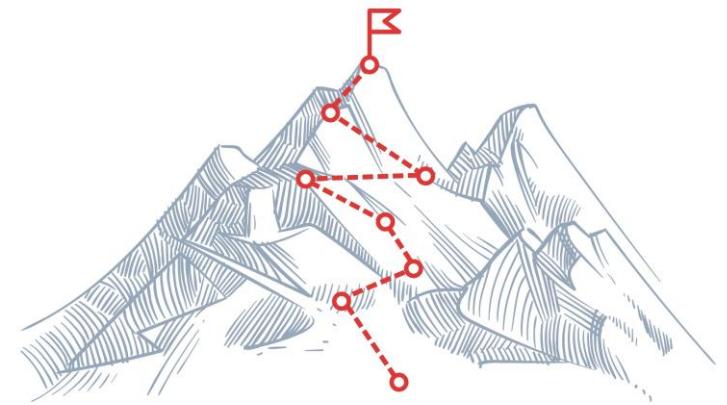


Let's Talk About...

Finite state machines

Learning Outcomes

- Discover finite state machines (FSMs)
 - Mealy FSMs
 - Moore FSMs
- Analyze and design finite state machines
 - Apply step-by-step algorithms
 - Model FSMs in Verilog



Quick Outline

- State Machines
 - Mealy FSMs
 - Moore FSMs
- State Machine Analysis
 - State Diagram
 - Example 1
 - Example 2
- State Machine Design
 - Algorithm
 - Example: Traffic light controller

State Machines

Combinational vs. Sequential

Recap

- Recall: Logic circuits can be classified into two types
 - **Combinational**
 - Outputs depend only on the current inputs
 - No memory elements, no state
 - **Sequential**
 - Outputs depend on the current inputs and the current circuit's state
 - As the state is defined by the past inputs and past states we can say that the outputs depend on the **current and past inputs** (possibly arbitrarily far back in time)
 - Memory elements to keep (hold) states
- Practical circuits are a combination of both types

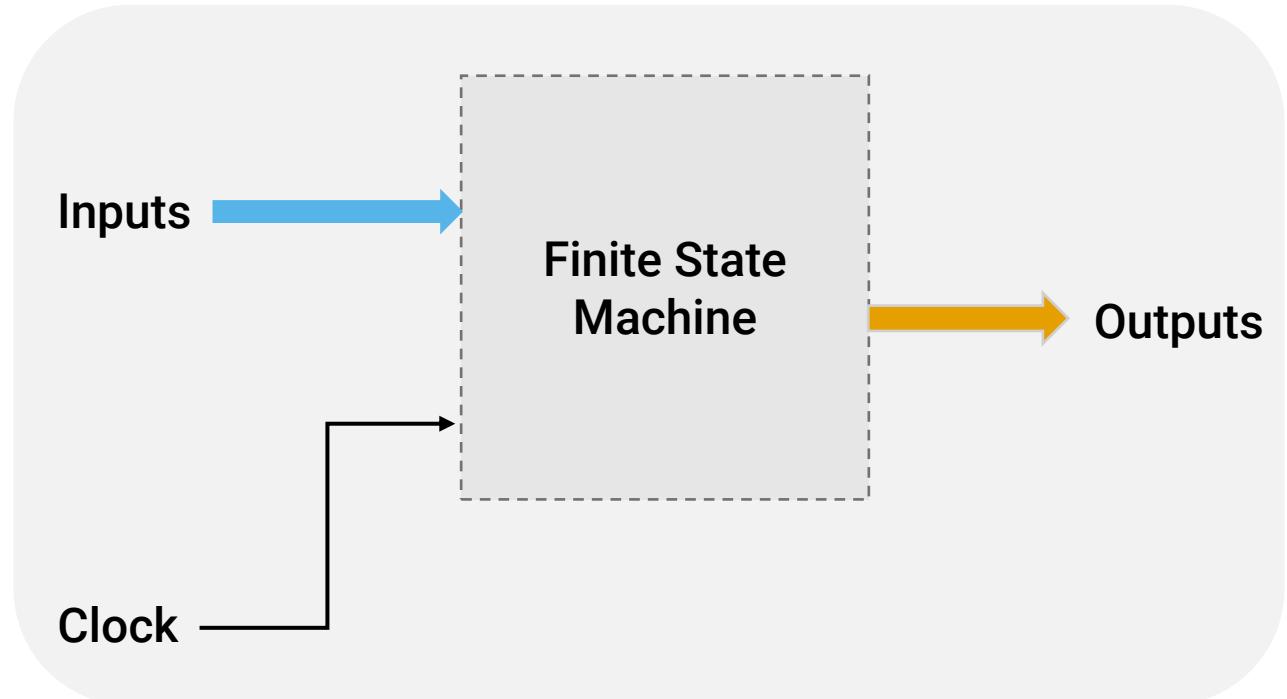
State Machines

Finite-State Machines

- Because circuits containing combinational and sequential logic have a state, we call them **state machines**
- States are represented by n -bit binary values (one memory element per one bit of the state)
 - Q: How many states can be represented with n bits?
 - A: $N_{\text{states}} = 2^n$
- As the number of states is limited (i.e., finite), we call such circuits **finite state machines (FSMs)**

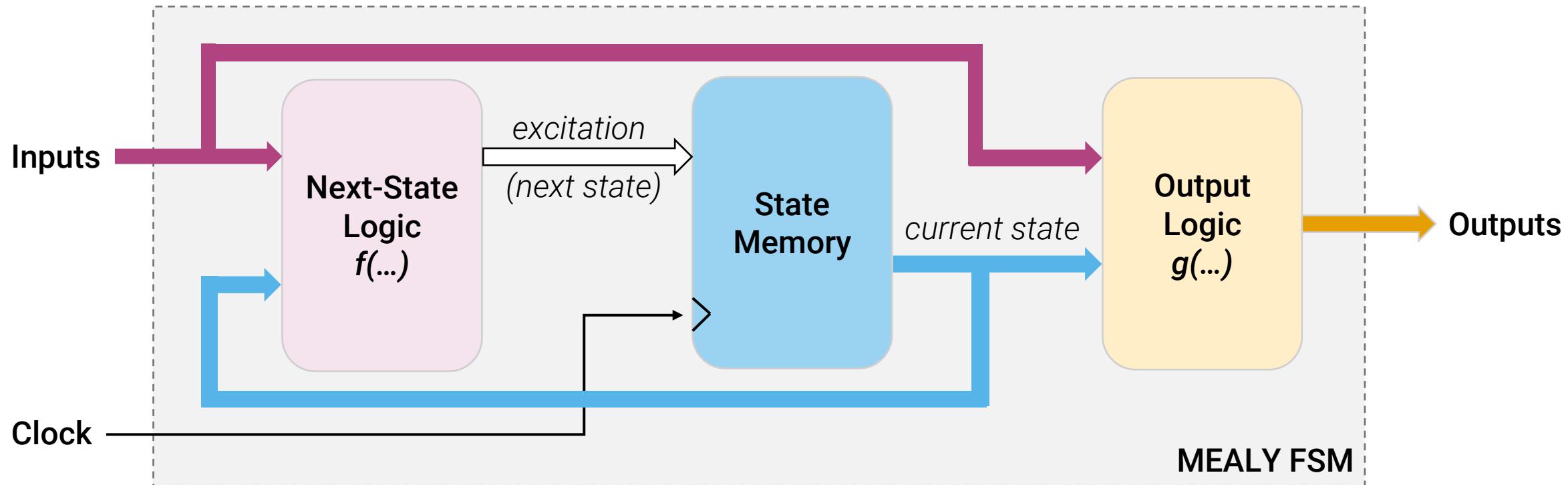
Finite State Machines

- Two types of FSMs exist
- Mealy state machines
 - Named after [George H. Mealy](#)
- Moore state machines
 - Named after [Edward F. Moore](#)
- State transitions occur in sync with the clock (e.g., rising edge)



Mealy State Machine

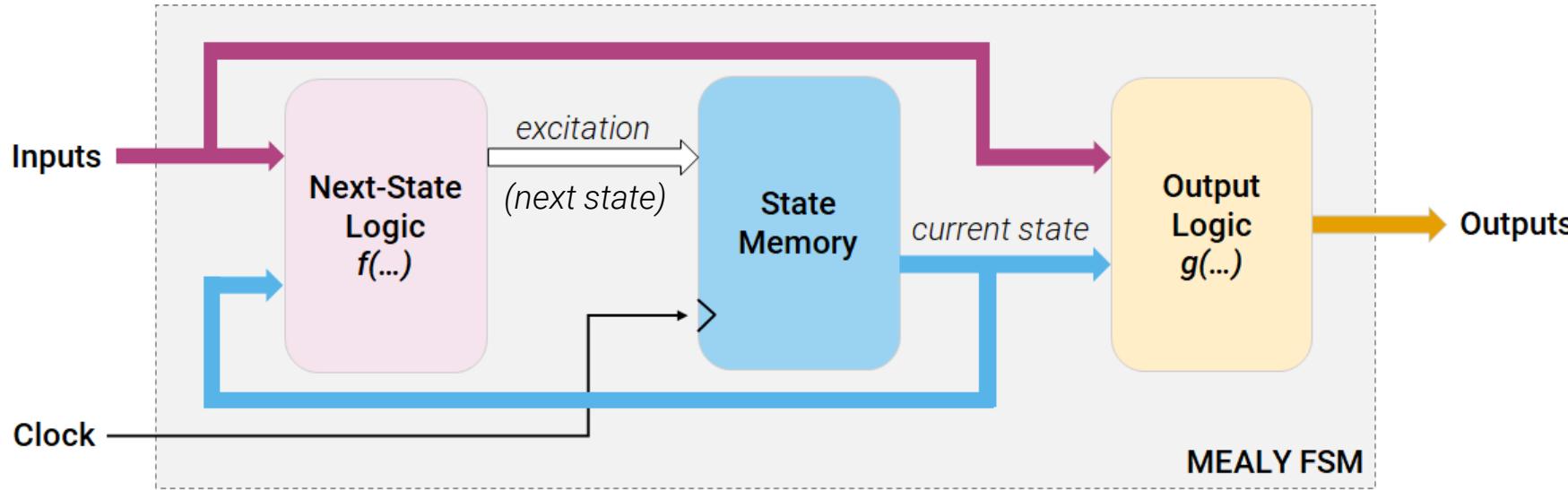
Structure



- If the outputs depend on the current state **and current inputs**, we have a **Mealy state machine**

Mealy State Machine

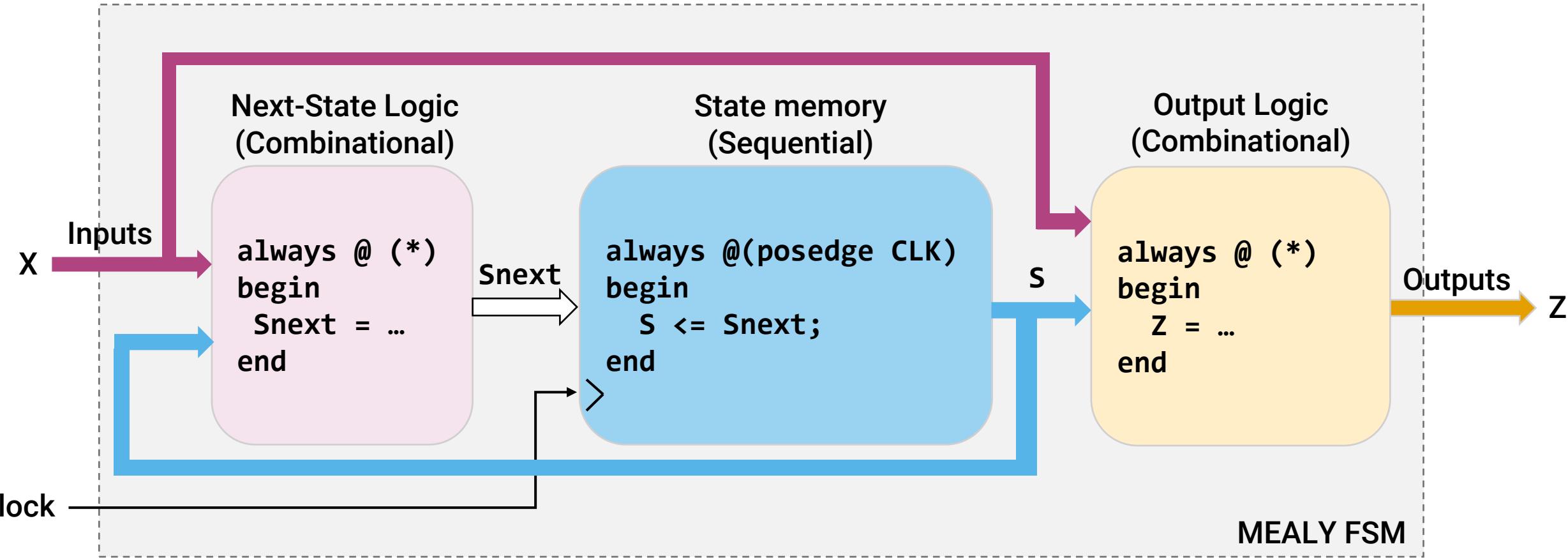
Contd.



- The **state memory** is a set of n flip-flops that store the current state
 - All connected to a common clock, causing them to update state once per clock period
- The **next state** is a function of inputs and current state
 - $\text{Next state} = f(\text{current state}, \text{input})$
- The **output** is a function of the current state and inputs
 - $\text{Output} = g(\text{current state}, \text{input})$

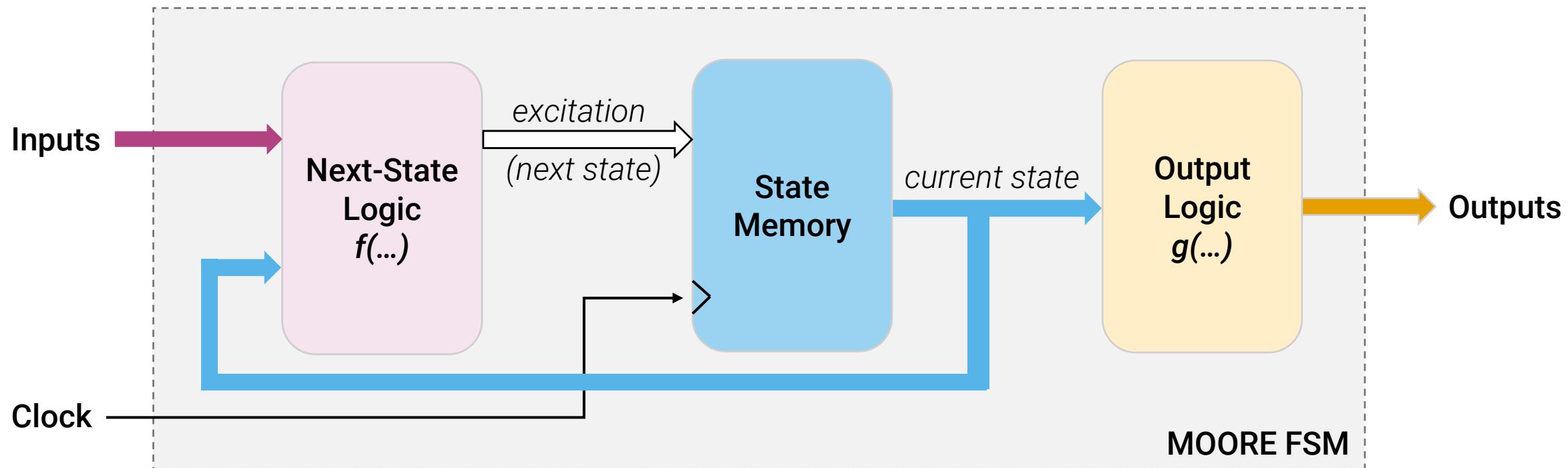
Mealy FSM Modeling

In Verilog



Moore State Machine

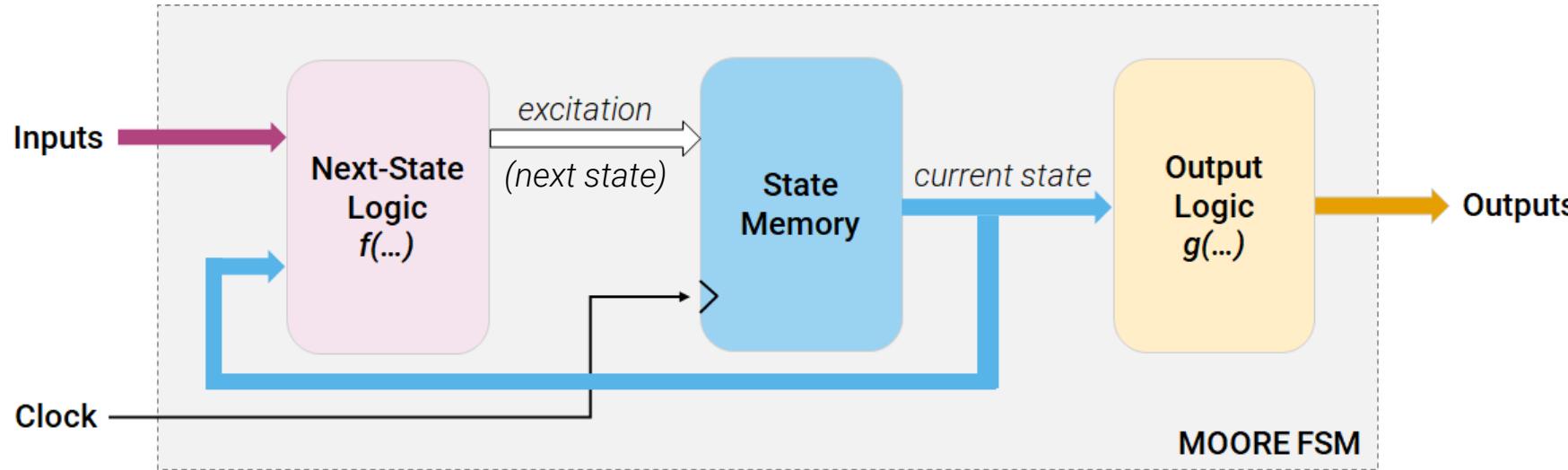
Structure



- If the outputs depend on the current state only, we have a **Moore state machine**

Moore State Machine

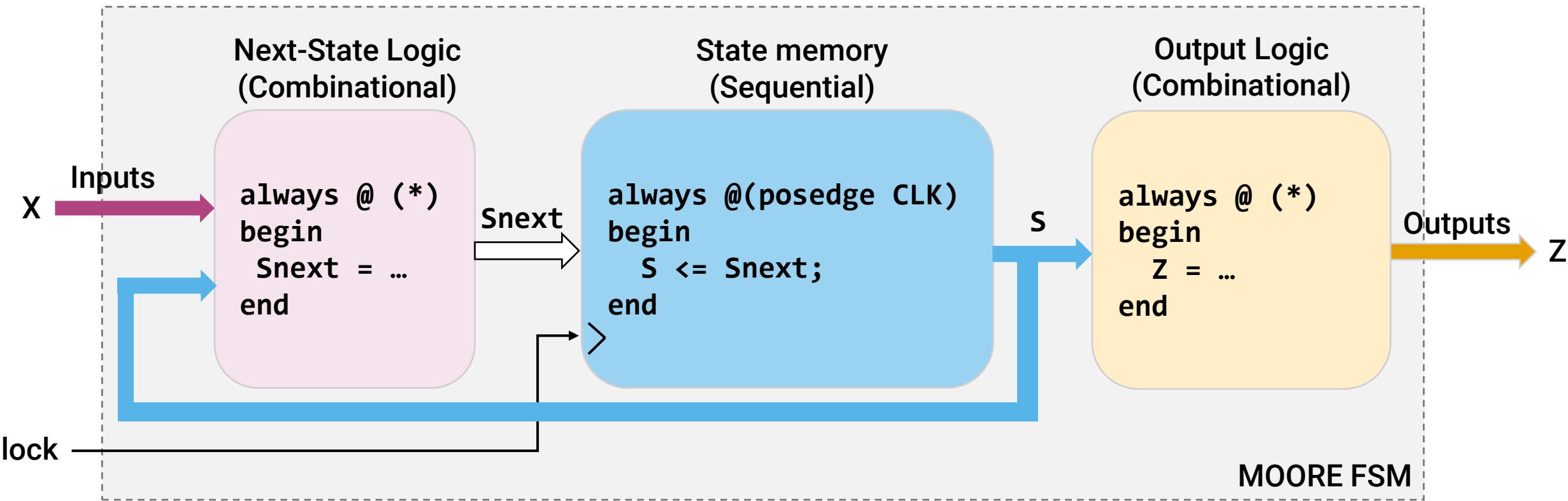
Structure

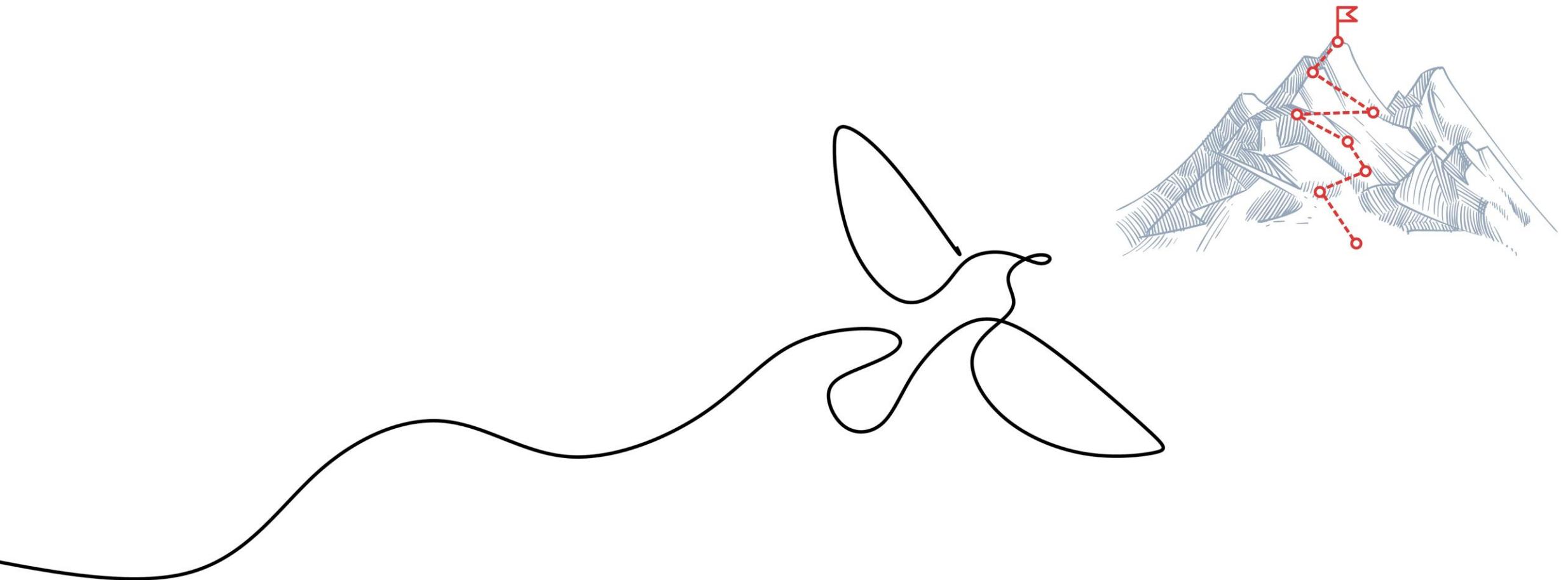


- The **next state** is a function of inputs and current state
 - $\text{Next state} = f(\text{current state}, \text{input})$
- The **output** is a function of the current state only
 - $\text{Output} = g(\text{current state})$
- Moore state machines are preferred (because there is no combinational path connecting inputs to outputs), whenever possible

Moore FSM Modeling

In Verilog





State Machine Analysis

Analysis of a circuit containing
combinational and sequential logic

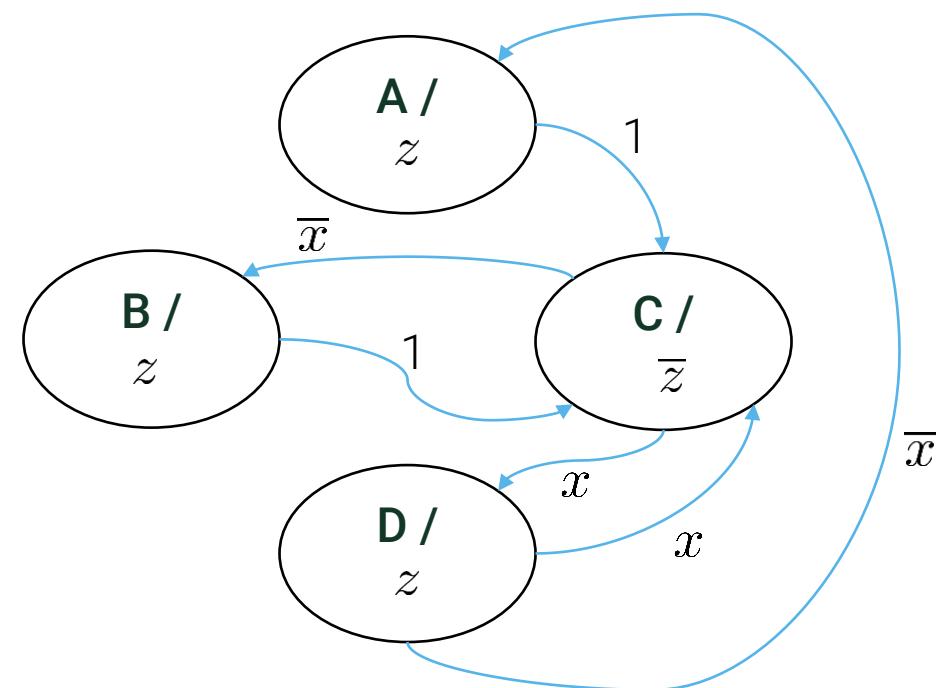
State Machine Analysis

Algorithm

- State machine analysis involves three basic steps:
 - **Step 1:** Given a logic circuit, determine the next-state and output functions $f()$ and $g()$, respectively
 - **Step 2:** Use $f()$ and $g()$ to construct a **state/output table** that completely specifies the next state and the output of the circuit for every possible combination of current state and inputs
 - **Step 3 (optional):** Draw a **state diagram** that presents the information from Step 2 in graphical form
- In practice, we more often design state machines than analyze them

What Are State Diagrams?

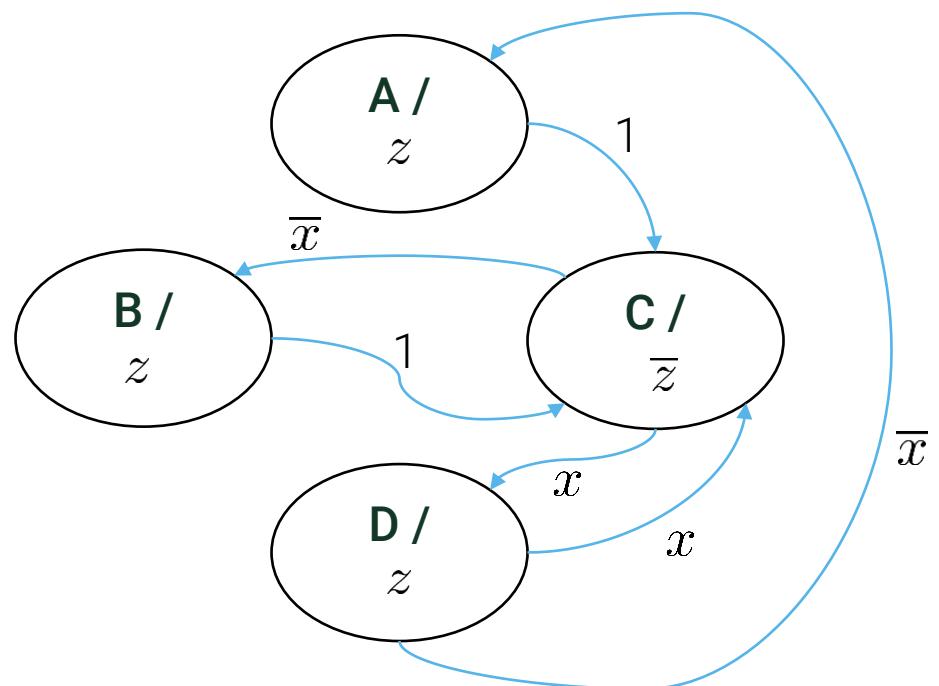
- Conceptually simplest method to describe the behavior of a sequential circuit is to draw a **state diagram**
 - A graph that depicts **states** of the circuit as nodes and **transition between states** as directed edges
- *Example:*



State Diagrams, Contd.

- **Nodes** in a state diagram
 - Annotated with the state name
 - If Moore FSM, nodes are also annotated with the output value

- *Example:*



- State names: A, B, C, D
- Output values: $z (=1)$ or $\bar{z} (=0)$
 - / acts as a separator

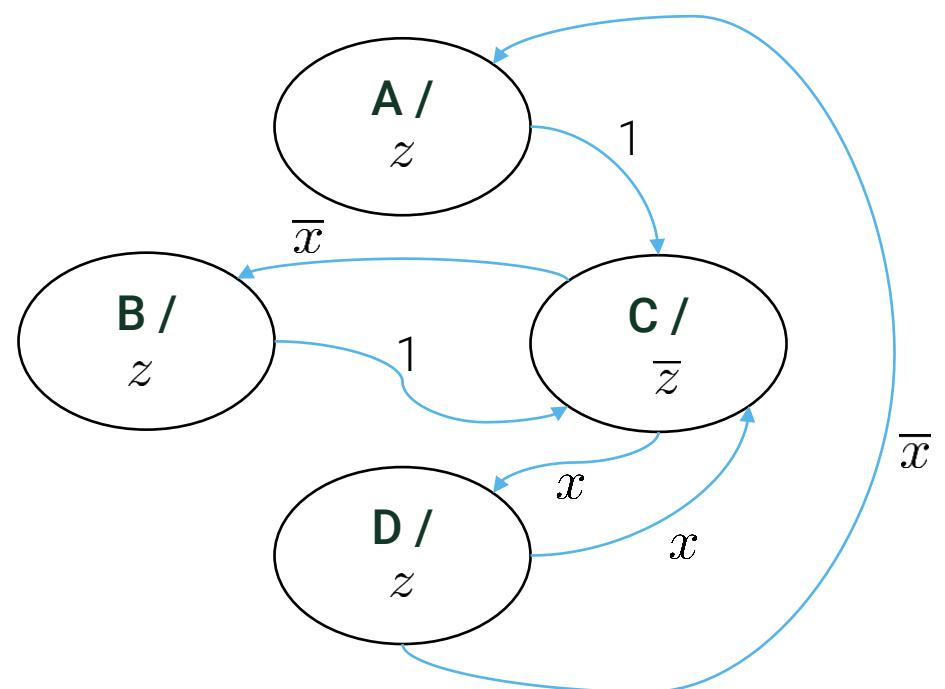
State Diagrams, Contd.

- **Directed edges**

in a state diagram

- Annotated with the transition (signals) causing the change of state
- State changes occur only in sync with clock
- If Mealy FSM, edges are also annotated with the output value

- *Example:*

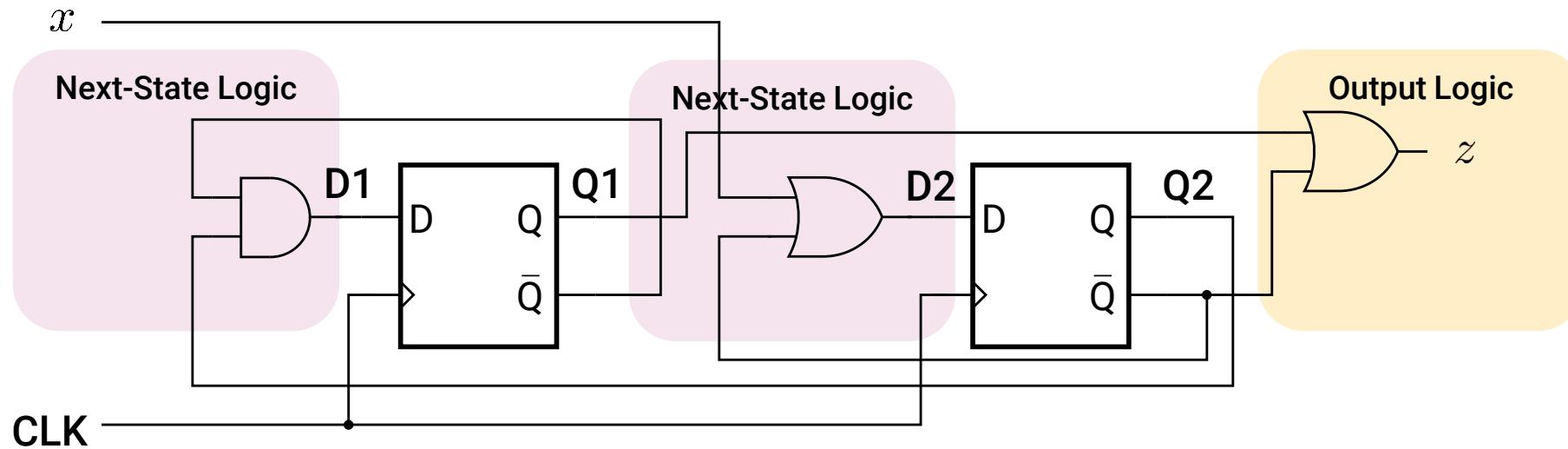


- State names: A, B, C, D
- Transitions: 1 (unconditionally) or as a function of input x

Example 1

State Machine Analysis

- Analyze the state machine implemented by the circuit below

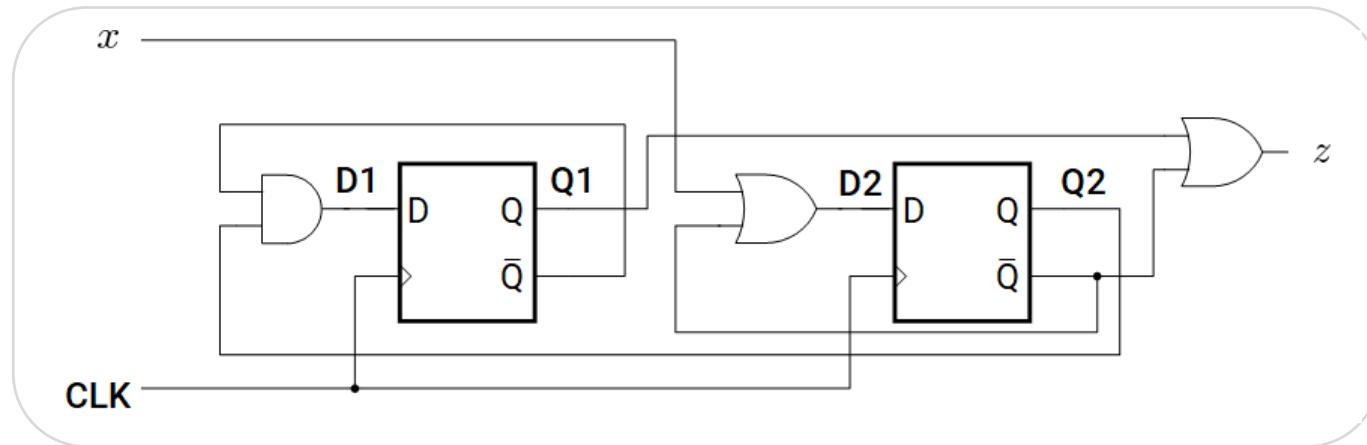


- Which type of FSM is this?
 - This is a Moore state machine; outputs depend only on the state

Example 1

State Machine Analysis, Contd.

- Step1: Given a logic circuit, determine the next-state and output functions $f()$ and $g()$



$$Q_1^* = D_1 = f_1(x, Q_1, Q_2) = \overline{Q_1} \cdot Q_2$$

$$Q_2^* = D_2 = f_2(x, Q_1, Q_2) = x + \overline{Q_2}$$

$$z = g(x, Q_1, Q_2) = Q_1 + \overline{Q_2}$$

* denotes next value of the state variable (next state)

Example 1

State Machine Analysis, Contd.

$$Q_1^* = D_1 = f_1(x, Q_1, Q_2) = \overline{Q_1} \cdot Q_2$$

$$Q_2^* = D_2 = f_2(x, Q_1, Q_2) = x + \overline{Q_2}$$

$$z = g(x, Q_1, Q_2) = Q_1 + \overline{Q_2}$$

State variables	Input	Next state S* (Excitation)	Outputs
Q2 Q1	x	D2 D1	z
0 0	0	1 0	1
0 1	0	1 0	1
1 0	0	0 1	0
1 1	0	0 0	1
0 0	1	1 0	1
0 1	1	1 0	1
1 0	1	1 1	0
1 1	1	1 0	1

* denotes next value of the state variable (next state)

Hey, we make our table more compact here!

State variables	Input	Next state (Excitation)	Outputs
Q2 Q1	x	D2 D1	z
0 0	0	1 0	1
0 1	0	1 0	1
1 0	0	0 1	0
1 1	0	0 0	1
0 0	1	1 0	1
0 1	1	1 0	1
1 0	1	1 1	0
1 1	1	1 0	1

Same sequence repeating

State variables	Next state S* (Excitation)		Outputs
	D2	D1	
Q2 Q1			when x is
	0	1	
0 0	1 0	1 0	1
0 1	1 0	1 0	1
1 0	0 1	1 1	0
1 1	0 0	1 0	1

Note: As output does not depend on x, we can compact this table to avoid repetitions

Back to our Example...

State Machine Analysis, Contd.

- **Step 2:** Construct a state/output table
- Let us give the states some names (e.g., A, B, C, ...)
- $00 \rightarrow A, 01 \rightarrow B, 10 \rightarrow C, 11 \rightarrow D$

State variables	Next state S^* (Excitation)		Outputs
	D2	D1	
		when x is	
	0	1	
Q2 Q1			
0 0	1 0	1 0	1
0 1	1 0	1 0	1
1 0	0 1	1 1	0
1 1	0 0	1 0	1

Current state, S	Next state, S^*		Outputs
	S	x	
	0	1	
A	C	C	1
B	C	C	1
C	B	D	0
D	A	C	1

Example 1

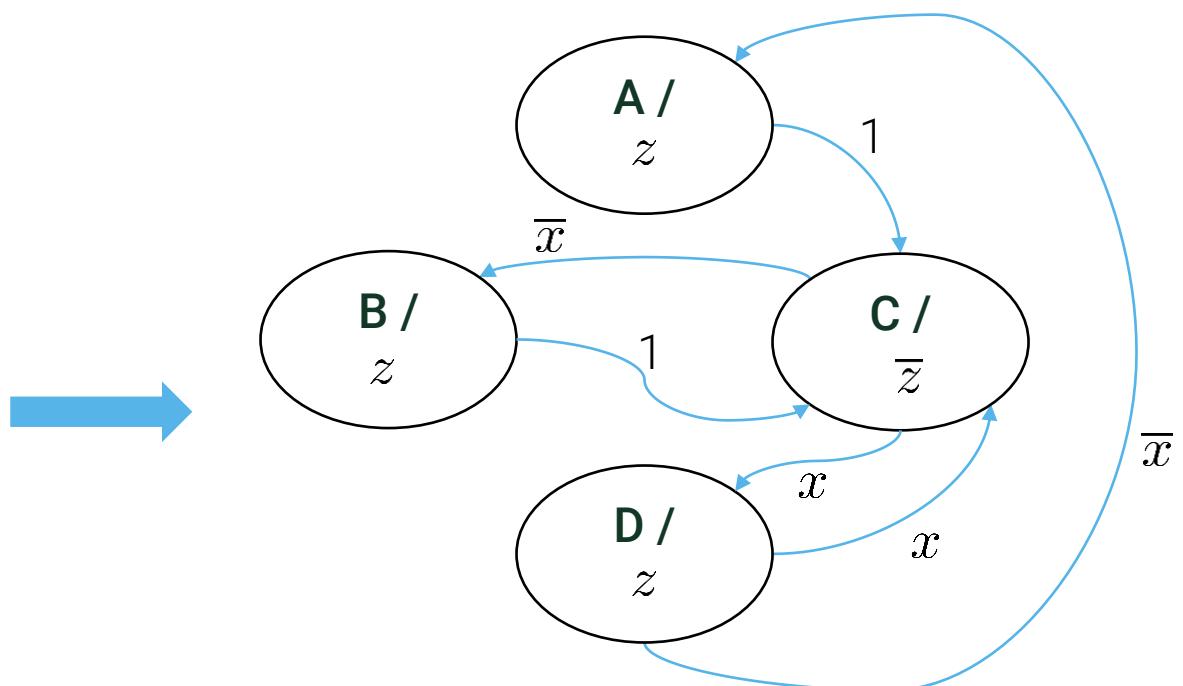
State Machine Analysis, Contd.

■ Step 3: Draw a state diagram

- Present the information from the state/output table in a graphical way
- One circle (node) for each state and an arrow (directed arc) for each state transition

State/output table

Current state, S	Next state, S*		Outputs
	x	z	
S	0	1	
A	C	C	1
B	C	C	1
C	B	D	0
D	A	C	1



Example 1

State Machine in Verilog

$$Q_1^* = D_1 = f_1(x, Q_1, Q_2) = \overline{Q_1} \cdot Q_2$$
$$Q_2^* = D_2 = f_2(x, Q_1, Q_2) = x + \overline{Q_2}$$

$$z = g(x, Q_1, Q_2) = Q_1 + \overline{Q_2}$$


```
module fsm_example1 (
    input x,
    input CLK,
    output reg z
);

reg [2:1] D, Q;

// Next-state logic
always @ (*) begin
    D[1] = ~Q[1] & Q[2];
    D[2] = x | ~Q[2];
end

// State memory
always @ (posedge CLK) begin
    Q <= D;
end

// Output logic
always @ (*) begin
    z = Q[1] | ~Q[2];
end
endmodule
```

Example 2

State Machine Analysis

- Analyze the state machine implemented by the circuit
- Step 1:** Determine next-state transition and output functions

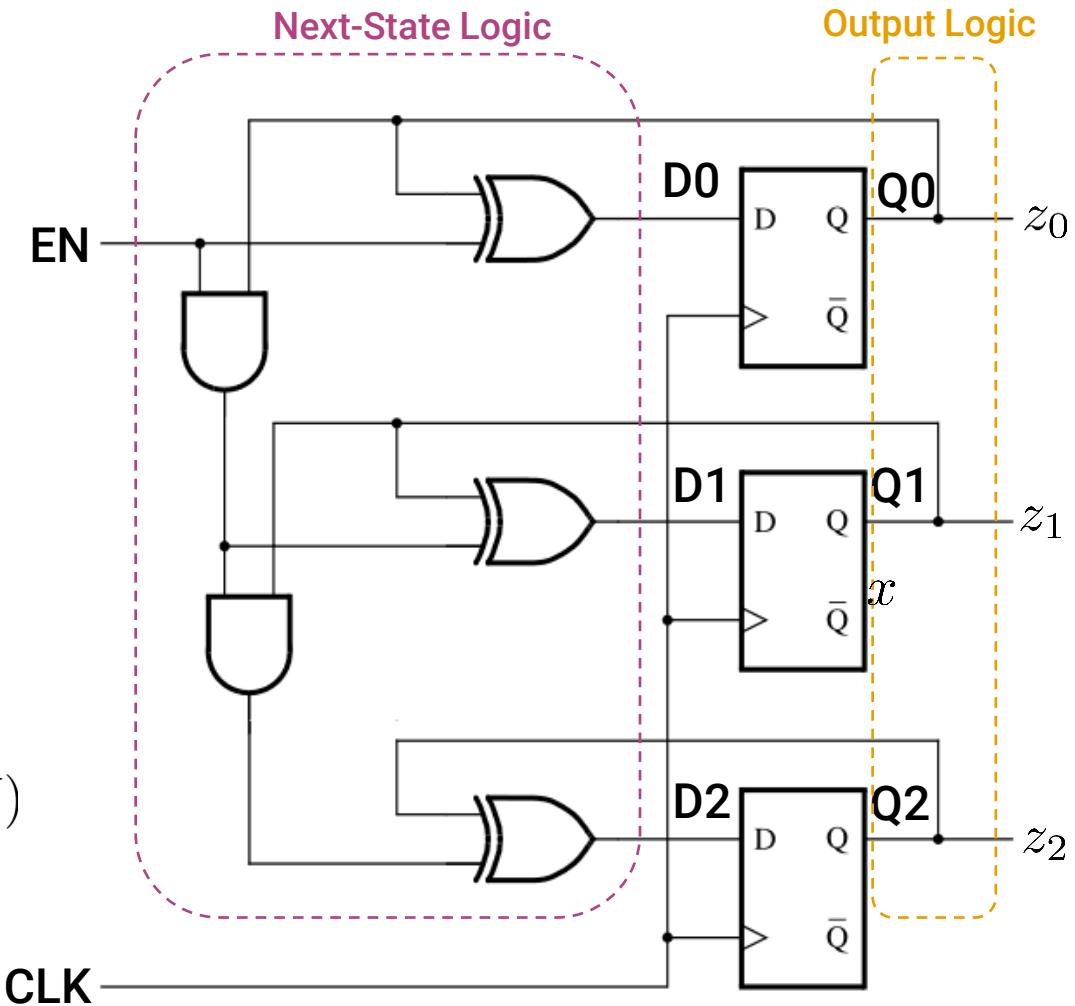
$$Q_0^* = D_0 = f_0(EN, Q_0, Q_1, Q_2) = Q_0 \oplus EN$$

$$Q_1^* = D_1 = f_1(EN, Q_0, Q_1, Q_2) = Q_1 \oplus (Q_0 EN)$$

$$Q_2^* = D_2 = f_2(EN, Q_0, Q_1, Q_2) = Q_2 \oplus (Q_0 Q_1 EN)$$

$$z_i = g_i(Q_i) = Q_i, 0 \leq i \leq 2$$

* denotes next value of the state variable



Example 2

State Machine Analysis, Step 2

$$Q_0^* = D_0 = Q_0 \oplus EN$$

$$Q_1^* = D_1 = Q_1 \oplus (Q_0 EN)$$

$$Q_2^* = D_2 = Q_2 \oplus (Q_0 Q_1 EN)$$

$$z_i = Q_i, 0 \leq i \leq 2$$

State variables			Excitation		
Q2	Q1	Q0	D2	D1	D0
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	0
1	1	1	1	1	1

Example 2

State Machine Analysis, Step 2

State variables			Excitation		
Q2	Q1	Q0	D2	D1	D0
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	0
1	1	1	1	1	1

$000 \rightarrow A$
 $001 \rightarrow B$
 ...
 $111 \rightarrow H$

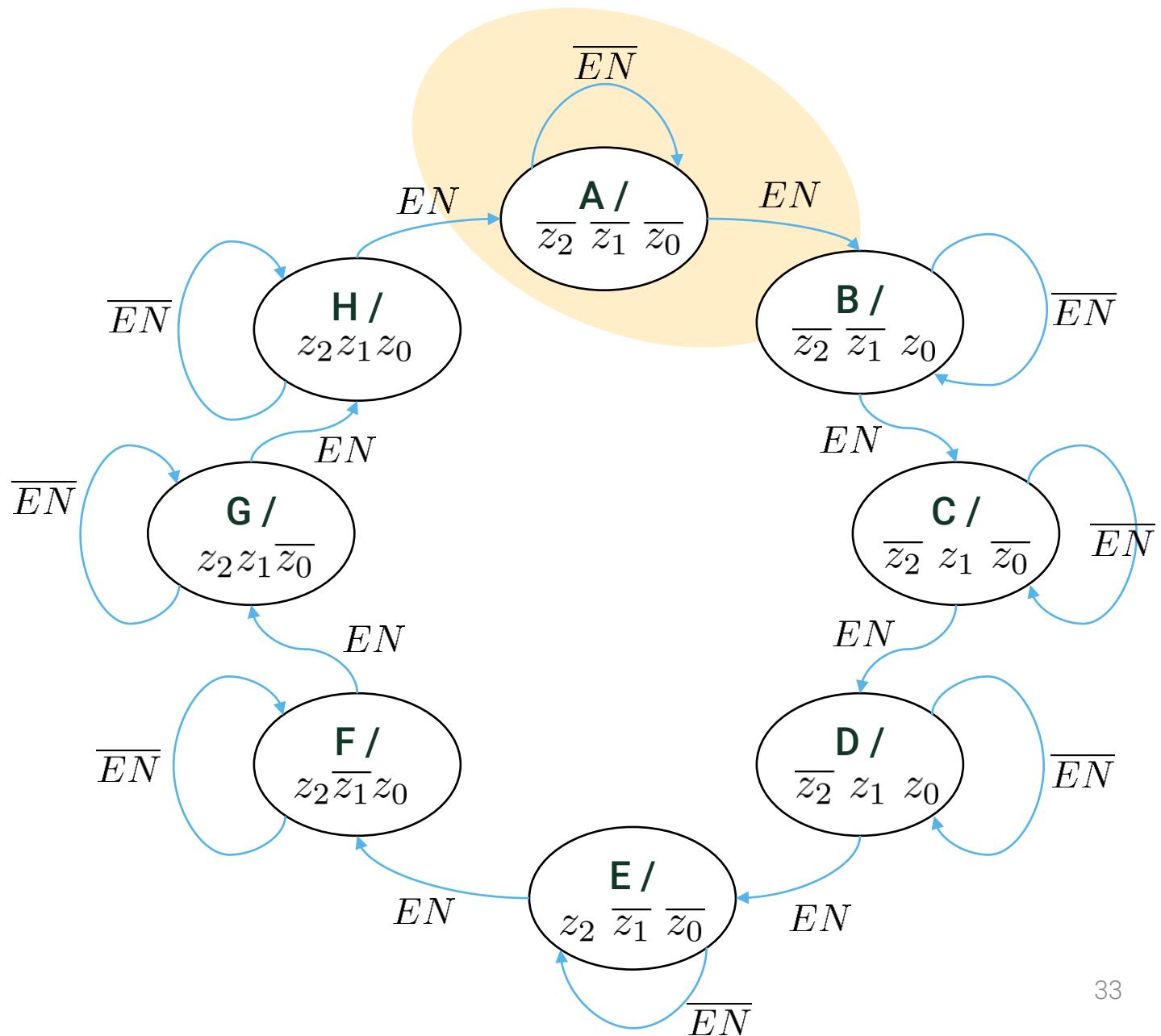


Current state, S	EN		Outputs		
	0	1	z2	z1	z0
A	A	B	0	0	0
B	B	C	0	0	1
C	C	D	0	1	0
D	D	E	0	1	1
E	E	F	1	0	0
F	F	G	1	0	1
G	G	H	1	1	0
H	H	A	1	1	1

Example 2

State Machine Analysis, Step 3

Current state, S	Next state, S^*		Outputs		
S	EN		z_2	z_1	z_0
	0	1			
A	A	B	0	0	0
B	B	C	0	0	1
C	C	D	0	1	0
D	D	E	0	1	1
E	E	F	1	0	0
F	F	G	1	0	1
G	G	H	1	1	0
H	H	A	1	1	1



State Machine Analysis

- What can you tell about the circuit?
- A: The circuit is a 3-bit counter
 - If enabled ($EN = 1$), it counts up in steps of one. Once the max count is reached (i.e., 111), it returns to the initial value (i.e., 000)
 - Otherwise, it keeps the last computed value

It is a Moore state machine (outputs depend only on the state). As there are three FFs, the FSM has 2^3 states.

Example 2

State Machine in Verilog

Verilog operators:

- & - bitwise AND
- | - bitwise OR
- ~ - bitwise NOT
- ^ - bitwise XOR

$$\begin{aligned} Q_0^* &= D_0 = Q_0 \oplus EN \\ Q_1^* &= D_1 = Q_1 \oplus (Q_0 EN) \\ Q_2^* &= D_2 = Q_2 \oplus (Q_0 Q_1 EN) \end{aligned}$$

$$z_i = Q_i, 0 \leq i \leq 2$$

```
// equivalent to
// output [2:0] z
assign z = Q;
```

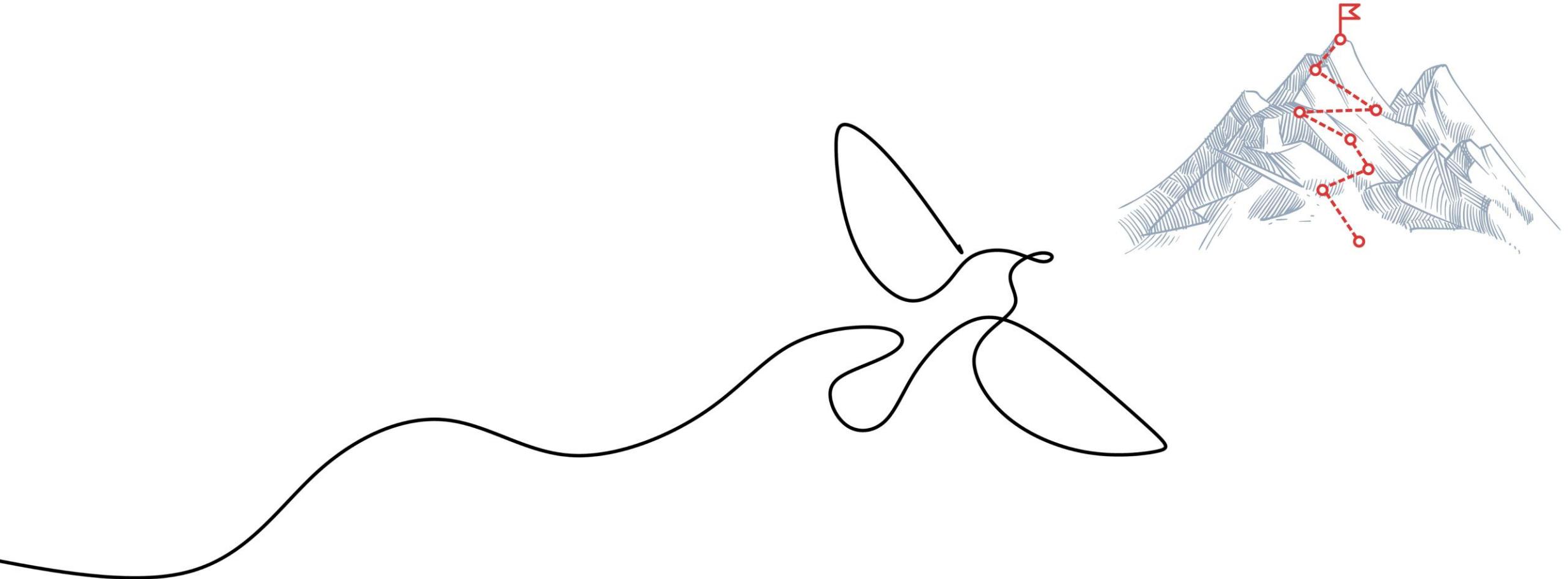
```
module fsm_example2 (
  input EN,
  input CLK,
  output reg [2:0] z
);

reg [2:0] D, Q;

// Next-state logic
always @ (*) begin
  D[0] = Q[0] ^ EN;
  D[1] = Q[1] ^ (Q[0] & EN);
  D[2] = Q[2] ^ (Q[1] & Q[0] & EN);
end

// State memory
always @ (posedge CLK) begin
  Q <= D;
end

// Output logic
always @ (*) begin
  z = Q;
end
endmodule
```

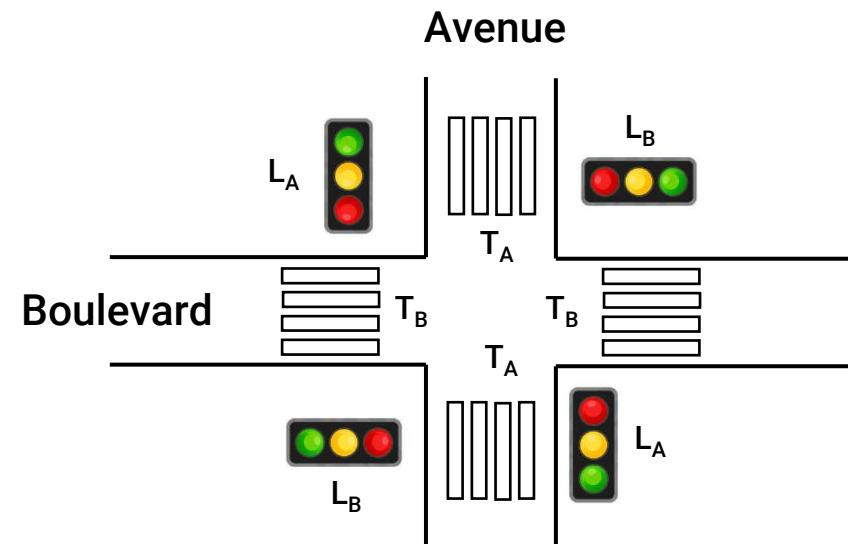


State Machine Synthesis

Much more common scenario in practice

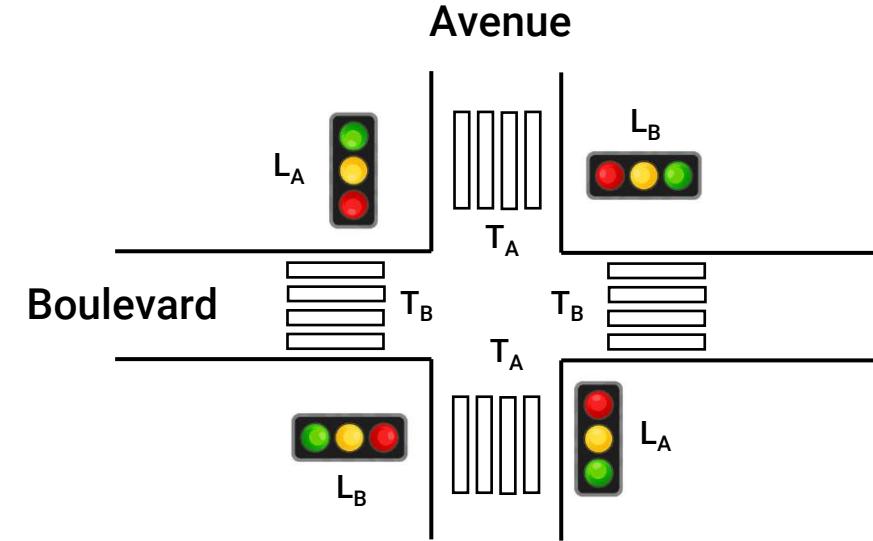
FSM Design Using an Example

- Consider that we need to design a traffic light controller
 - T_A, T_B : Signals from the traffic sensors; active when there is traffic
 - L_A, L_B : Signals for controlling traffic lights



FSM Design Algorithm

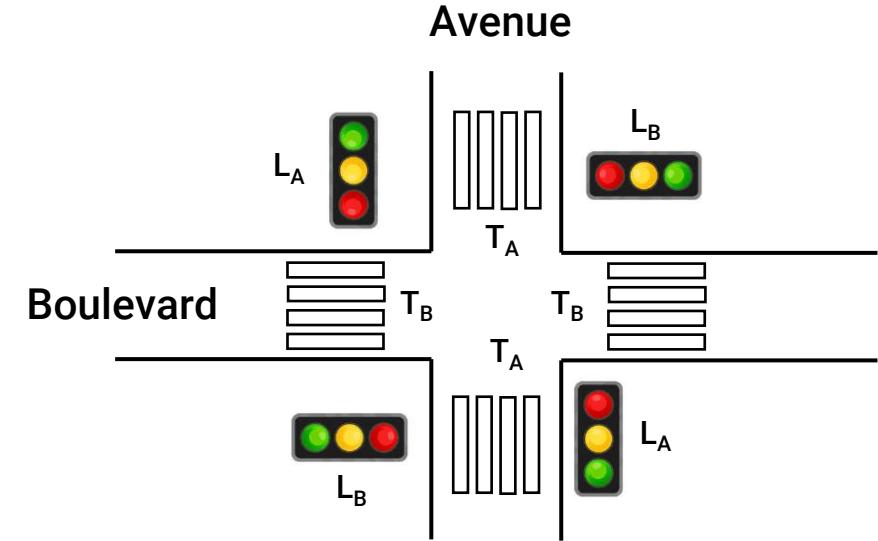
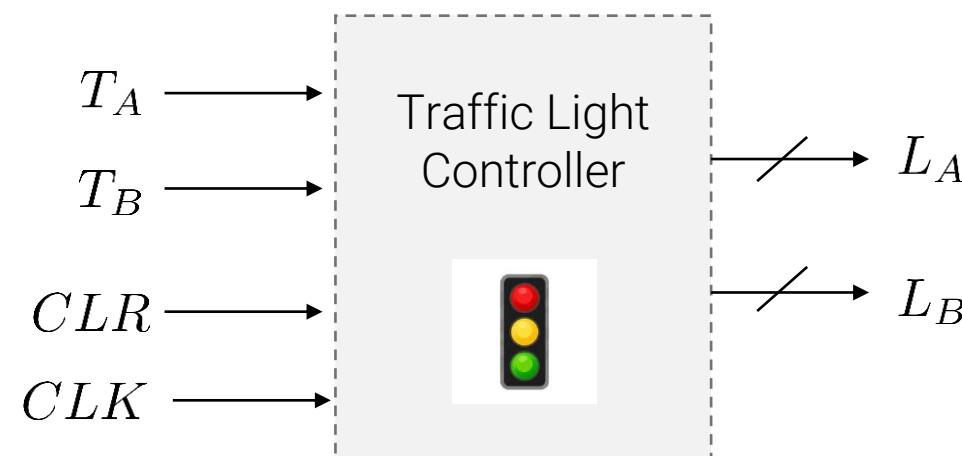
- Identify FSM inputs and outputs
- Draw state transition diagram
- Construct state table
 - Select state encodings (binary vectors)
 - Rewrite state table with state encodings
 - Write logic expressions for next state
- Construct output table
 - Select output encodings (binary vectors)
 - Write logic expressions for output
- Construct the equivalent logic circuit (drawing, Verilog)



Traffic Light Controller

Example

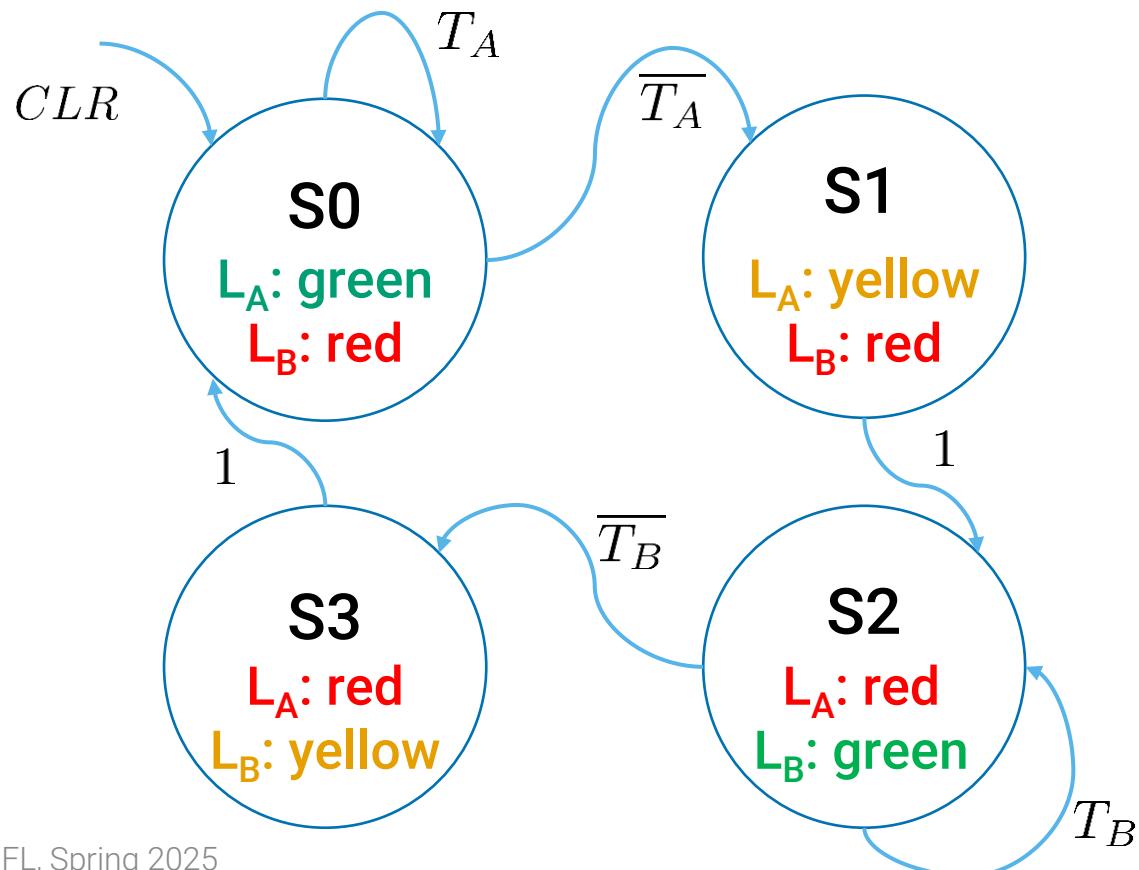
- Identify FSM inputs and outputs
 - Two one-bit inputs from the traffic sensors
 - CLK, system clock
 - CLR, synchronous reset for clearing the state memory
 - Multiple bits for the outputs (there are three lights: red, yellow, green)



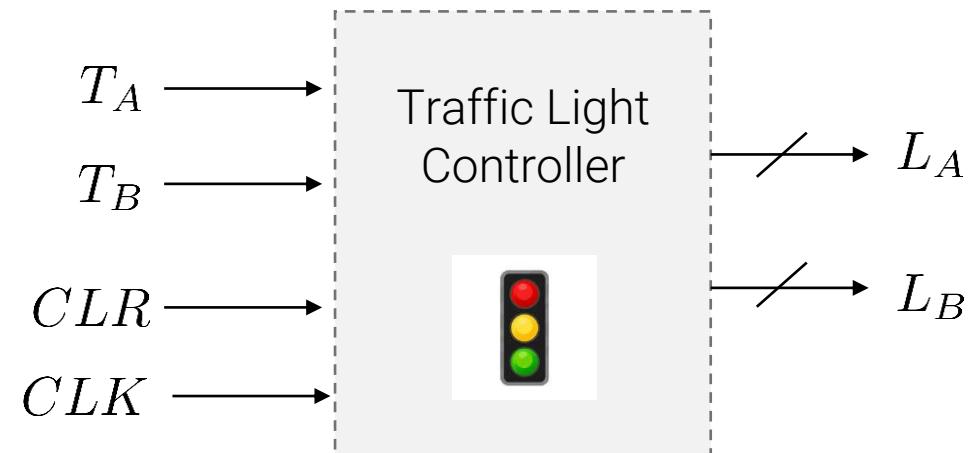
Traffic Light Controller

Example, Contd.

- Draw state transition diagram



Recall...



Traffic Light Controller

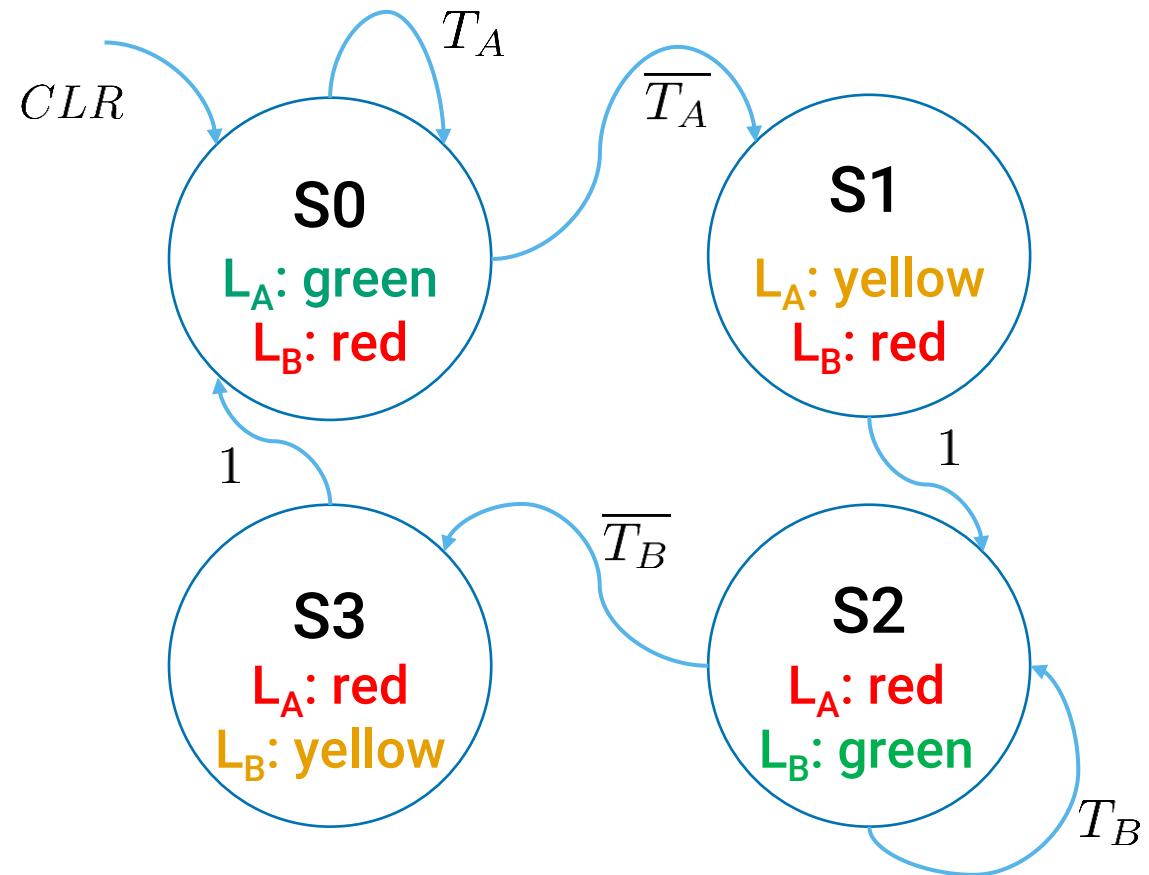
Example, Contd.

- Construct state table

Current State, S	Inputs		Next State, S*
S	T_A	T_B	S^*
S0	1	X	S0
S0	0	X	S1
S1	X	X	S2
S2	X	1	S2
S2	X	0	S3
S3	X	X	S0

X stands for 0/1 (i.e., both options)

Recall...



Traffic Light Controller

Example, Contd.

- Select state encodings
 - Four states; hence, two bits suffice to encode all states
 - Example state encoding:

State	Encoding
S0	00
S1	01
S2	10
S3	11

Note: Choice of encoding impacts implementation; in practice, we prefer to let tools infer best encoding

Recall...

Current State, S	Inputs		Next State, S*
	T _A	T _B	
S0	1	X	S0
S0	0	X	S1
S1	X	X	S2
S2	X	1	S2
S2	X	0	S3
S3	X	X	S0

X stands for 0/1 (i.e., both options)

Traffic Light Controller

Example, Contd.

Rewrite state table

Current State, S	Inputs		Next State, S*
Q1 Q0	T _A	T _B	D1 D0
0 0	1	X	0 0
0 0	0	X	0 1
0 1	X	X	1 0
1 0	X	1	1 0
1 0	X	0	1 1
1 1	X	X	0 0

X stands for 0/1 (i.e., both options)

Next-State Logic

$$Q_1^* = D_1 = \overline{Q_1} Q_0 + Q_1 \overline{Q_0} = Q_0 \oplus Q_1$$

$$Q_0^* = D_0 = \overline{Q_1} \overline{Q_0} T_A + Q_1 \overline{Q_0} T_B$$

Recall...

Current State, S	Inputs		Next State, S*
	T _A	T _B	S*
S0	1	X	S0
S0	0	X	S1
S1	X	X	S2
S2	X	1	S2
S2	X	0	S3
S3	X	X	S0

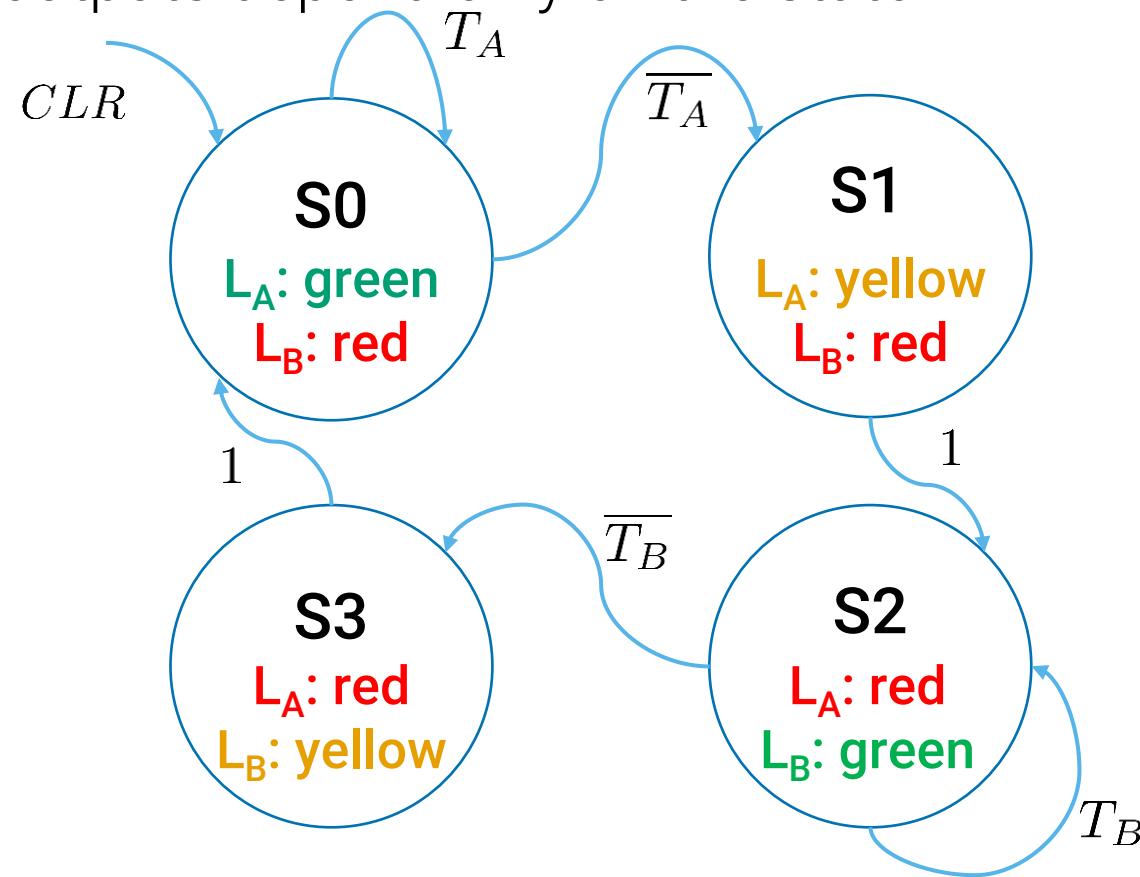
X stands for 0/1 (i.e., both options)

State	Encoding
S0	00
S1	01
S2	10
S3	11

Traffic Light Controller

Example, Contd.

- Construct output table; select output encodings
 - Moore FSM: outputs depend only on the state



Traffic Light Controller

Example, Contd.

- Construct output table; select output encodings
 - Moore FSM: outputs depend only on the state
 - Three different outputs, hence two bits required to represent them
 - L_A : Two bits (L_{A1}, L_{A0})
 - L_B : Two bits (L_{B1}, L_{B0})
- For the encoding given in the table:
 - If L_A is green: $L_{A1} = 0, L_{A0} = 0$;
 - If L_B is yellow: $L_{B1} = 0, L_{B0} = 1$;
 - etc.

Output	Encoding
GREEN	00
YELLOW	01
RED	10

Note: Choice of encoding impacts implementation; in practice, we prefer to let tools infer best encoding

Traffic Light Controller

Example, Contd.

- Construct output table; write logic expressions

Current State, S		Outputs			
Q1	Q0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output Logic

$$L_{A1} = Q_1$$

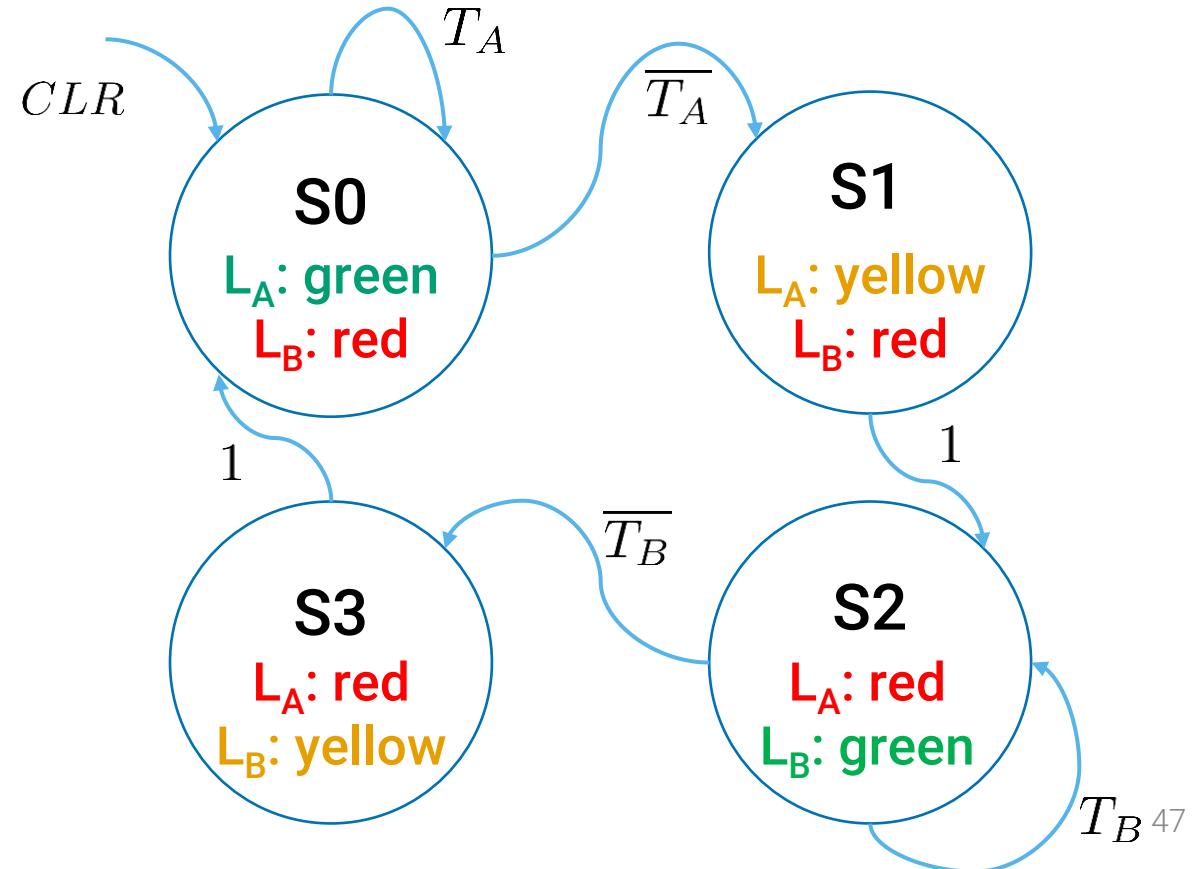
$$L_{B1} = \overline{Q_1}$$

$$L_{A0} = \overline{Q_1} Q_0$$

$$L_{B0} = Q_1 Q_0$$

Recall...

State	Encoding	Output	Encoding
S0	00	GREEN	00
S1	01	YELLOW	01
S2	10	RED	10
S3	11		



Traffic Light Controller

Example, Contd.

Next-State Logic

$$Q_1^* = D_1 = \overline{Q_1} Q_0 + Q_1 \overline{Q_0} = Q_0 \oplus Q_1$$

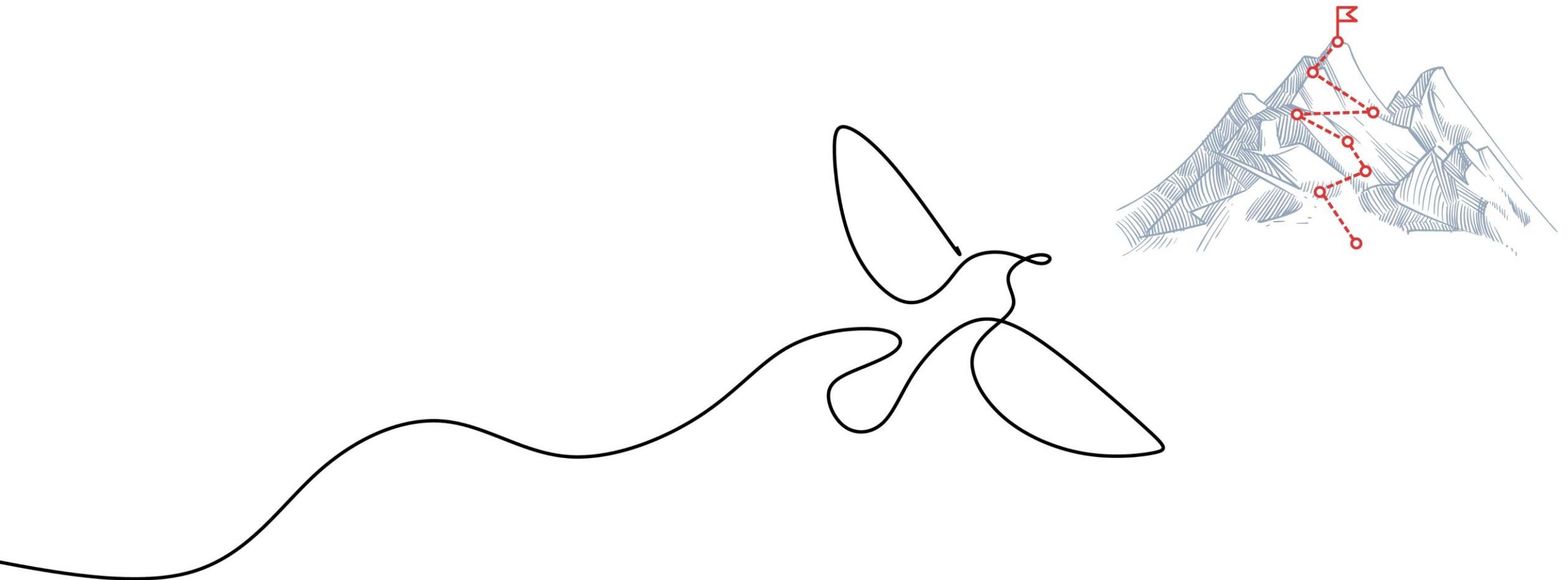
$$Q_0^* = D_0 = \overline{Q_1} \overline{Q_0} \overline{T_A} + Q_1 \overline{Q_0} \overline{T_B}$$

Output Logic

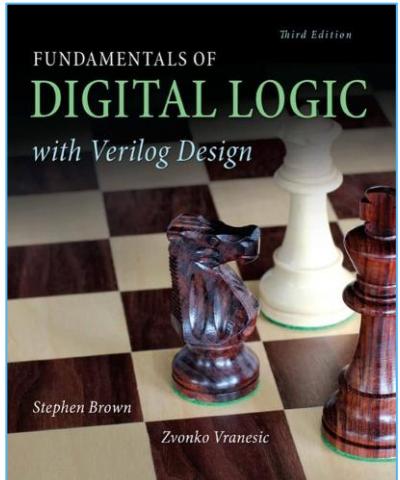
$$L_{A1} = Q_1 \quad L_{B1} = \overline{Q_1}$$

$$L_{A0} = \overline{Q_1} Q_0 \quad L_{B0} = Q_1 Q_0$$

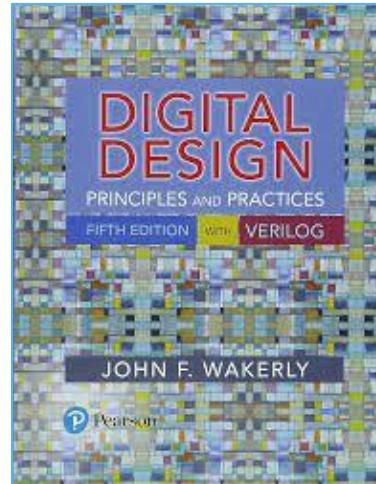
```
module traffic_light_ctrl (
  input TA, TB, CLR, CLK,
  output reg [1:0] LA, LB
);
  reg [1:0] D, Q;
  // Next-state logic
  always @ (*) begin
    D[1] = Q[0] ^ Q[1];
    D[0] = (~Q[1] & ~Q[0] & ~TA)
           | (Q[1] & ~Q[0] & ~TB);
  end
  // State memory
  always @ (posedge CLK)
  begin
    if (CLR == 1) Q <= 0;
    else Q <= D;
  end
  // Output logic
  always @ (*) begin
    LA[1] = Q[1]; LA[0] = ~Q[1] & Q[0];
    LB[1] = ~Q[1]; LB[0] = Q[1] & Q[0];
  end
endmodule
```



Literature



- Chapter 6: Synchronous Sequential Circuits
 - 6.1.1, 6.1.2, 6.3. 6.4.1



- Chapter 9: State Machines
 - 9.1-9.3