Digital Logic Circuits

Finite State Machines

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic

FUNDAMENTALH o Spring 2025

D IGITAL

SYSTEMS

https://mirjanastojilovic.github.io/cs173/index.html

el B R e e E N ENEENREEEEDN

. ,-----anlll’dlllllll--".
. -lIllllI....v
" s aE N EEEEEEN

P -lu-lllllﬂlll...
" s nmEN EEN

--------- EEEEENEEENE

HEE NN EIDE =i

--------- EEnEEEEENEERE

sssnsEEEEESEANREEN
.....-----Iullllll

Previously on FDS ey

Memory i .

CS-173, © EPFL, Spring 2024 © kras99 / Adobe Stock

Previously A

= 2-t0-2" Binary decoders »
 Defined the functionality
» Used Verilog conditional operator to model them

= | earned what memories are and how to build them with DFFs
« Two-dimensional arrays of DFFs

« Address port for indexing the row (i.e., data word)
« Used 2-to-2" binary decoder to activate one enable signal per row
« Access protocol: when/how to read and when/how to write

« Modeled memory as a two-dimensional array of DFFs in Verilog

« Learned how to use Verilog parameters to be able to instantiate memories
with various configurations (e.g., number of rows or data word width)

Let’'s Talk About...

Finite state machines

CS-173, © EPFL, Spring 2025

Learning Outcomes

= Discover finite state machines (FSMs)
* Mealy FSMs
* Moore FSMs

= Analyze and design finite state machines
* Apply step-by-step algorithms
« Model FSMs in Verilog

Quick Outline

s State Machines
* Mealy FSMs
* Moore FSMS

» State Machine Analysis
 State Diagram
« Example T
e Example 2

» State Machine Design
 Algorithm
« Example: Traffic light controller

CS-173, © EPFL, Spring 2025

State Machines

CS-173, © EPFL, Spring 2025

Combinational vs. Sequential

Recap

= Recall: Logic circuits can be classified into two types

« Combinational
 QOutputs depend only on the current inputs
« No memory elements, no state

» Sequential
« Qutputs depend on the current inputs and the current circuit’'s state

« As the state is defined by the past inputs and past states
we can say that the outputs depend on the current and past inputs
(possibly arbitrarily far back in time)

« Memory elements to keep (hold) states

= Practical circuits are a combination of both types

State Machines

Finite-State Machines

» Because circuits containing combinational and sequential logic
have a state, we call them state machines

= States are represented by n-bit binary values

(one memory element per one bit of the state)
« Q: How many states can be represented with n bits?
* A Nstates = 2"

= As the number of states is limited (i.e., finite), we call such
circuits finite state machines (FSMs)

Finite State Machines

= Two types of FSMs exist
i Inputs
= Mealy state machines P ' FiniteState |
« Named after George H. Mealy - Machine Outputs

= Moore state machines
« Named after Edward F. Moore Clock

= State transitions occur in sync with the clock (e.g., rising edge)

https://en.wikipedia.org/wiki/George_H._Mealy
https://en.wikipedia.org/wiki/Edward_F._Moore

Mealy State Machine

Structure

excitation

Inputs I
Next-State (next state) Stat Output
Logic M e current state Logic
emor
f(..) i g(..
[\
Clock | 5
i MEALY FSM !

__

= [f the outputs depend on the current state and current inputs,
we have a Mealy state machine

CS-173, © EPFL, Spring 2025

Outputs

11

Mealy State Machine

Contd.

excitation

Logic current state Logic : Outputs
Memo .
f(..) = g(-) '

Inputs

Clock — | |
| MEALY FSM |

= The state memory is a set of n flip-flops that store the current state
 All connected to a common clock, causing them to update state once per clock period

= The next state is a function of inputs and current state
« Next state = f(current state, input)

= The output is a function of the current state and inputs
« Qutput = g(current state, input)

CS-173, © EPFL, Spring 2025

12

Mealy FSM Modeling

In Verilog

| Next-State Logic State memory Output Logic
i (Combinational) (Sequential) (Combinational) i
Infbuts I
X ' always @ (*) always @(posedge CLK) always @ (*) :
: begin Snext pegin S begin Outputs .
' Snext = .. S <= Snext; Z = .. 5
i end end end |
a — '
Clock — :
__ MEALY FSM
CS-173, © EPFL, Spring 2025 13

Note: Adjust the sensitivity list of the state memory, as required

Moore State Machine

Structure
i excitation
Inputs — |
: Next-State (ﬂeXl‘ State) State current state Output
| Logic Logic
Memor
f(..) y g(..
[\
Clock | i
| MOORE FSM

__

= |f the outputs depend on the current state only,
we have a Moore state machine

Outputs

Moore State Machine

Structure

| excitation

Inputs me— [
| Next-State (next state) State currentstate Output |
Logic Memory Logic : Outputs
f(..) g(--) |
[\

Clock — | |
| MOOREFSM |

= The next state is a function of inputs and current state
« Next state = f(current state, input)

= The output is a function of the current state only
 Qutput = g(current state)

= Moore state machines are preferred (because there is no combinational
path connecting inputs to outputs), whenever possible

Moore FSM Modeling

In Verilog

i Next-State Logic State memory Output Logic
i (Combinational) (Sequential) (Combinational)
X Input_s always @ (*) always @(posedge CLK) always @ (*) 5
i begin S begin S begin Outputs .
Snext = S <= Snext; Z = .. 5
end end end
— &
Clock 5
e MOORE FSM

Note: Adjust the sensitivity list of the state memory, as required

CS-173, © EPFL, Spring 2025

17

State Machine Analysis

Analysis of a circuit containing
combinational and sequential logic

CS-173, © EPFL, Spring 2025

State Machine Analysis

Algorithm

= State machine analysis involves three basic steps:

« Step 1: Given a logic circuit, determine the next-state and output
functions f() and g(), respectively

« Step 2: Use f() and g() to construct a state/output table that
completely specifies the next state and the output of the circuit
for every possible combination of current state and inputs

« Step 3 (optional): Draw a state diagram that presents the information
from Step 2 in graphical form

= |n practice, we more often design state machines than analyze them

What Are State Diagrams?

» Conceptually simplest method = Example:
to describe the behavior of
a sequential circuit is to draw
a state diagram

« A graph that depicts states
of the circuit as nodes and
transition between states
as directed edges

sl

State Diagrams, Contd.

= Nodes in a state diagram
« Annotated with the state name

* |f Moore FSM, nodes are also
annotated with the output value

= Lxample:

= State names: A, B, C D

= Qutput values:z(=1) or Z(=0)
e /actsasa separator

sl

State Diagrams, Contd.

= Directed edges
in a state diagram

« Annotated with the transition
(signals) causing the change
of state

 State changes occur only in
sync with clock

* If Mealy FSM, edges are also
annotated with the output value

= Lxample:

= State names: A, B, C D

= Transitions: 1 (unconditionally) or
as a function of input x

sl

(7]
i
—
o
=
<
x
1]

Example 1

State Machine Analysis

= Analyze the state machine implemented by the circuit below

X

Next-State Logic

pit

Q1

Ne)

(t-State Logic

Output Logic

— o=

Q2

-

CLK

= \Which type of FSM is this?
 This is a Moore state machine; outputs depend only on the state

CS-173, © EPFL, Spring 2025

23

(7]
i
—
o
=
<
x
1]

Example 1 .

State Machine Analysis, Contd.

CLK

= Step1: Given a logic circuit,

determine the next-state and output functions () and g()

Qi =D1 = fi(z,Q1,Q2) = Q1 - Q2

Q; :D2 — f2($7Q17Q2) :ZU—|—@
z2=g(x,Q1,Q2) = Q1 + Q2

* denotes next value of the state variable (next state)

CS-173, © EPFL, Spring 2025

1

Q1

— =

Q2

24

(7]
i
—
o
=
<
x
1]

Example 1

State Machine Analysis, Contd.

Qi =D1 = fi(z,Q1,Q2) = Q1 - Q2

Q;ZDQZfQ(CU,Ql,QQ):CU—I—@ ‘
z=g(x,Q1,Q2) = Q1 + Q2

* denotes next value of the state variable (next state)

CS-173, © EPFL, Spring 2025

State
variables

Q2 QT
00

0 T
10
11
00
01
10
11

IN

put

o o o o X

Next state S*
(Excitation)

D2 DT
10
10
01
00
10
10
11
10

Outputs

Z

25

Hey, we make our table more compact here!

State Inout Next state Outouts
variables P (Excitation) P Siate Next state S*
Q2 Q1 X D2 D1 Z variables (Excitation) Outputs
i 00 0 10 1 D2 D1
S 8 when x is
< 01 0 10 1 = Q2 QT Z
n - O 0 1
10 0 ON 0 S
= 00 10 10 1
11 0 00 1 L
4 C< 0 1 10 10 1
00 1 10 1 v
o 1T 0 01 11 0
01 1 10 1 O
- o 11 00 10 1
10 1 11 0 S
98]
11 1 10 1 O

Note: As output does not depend on x, we can compact this table to avoid repetitions

CS-173, © EPFL, Spring 2025

26

Back to our Example...

State Machine Analysis, Contd.

= Step 2: Construct a state/output table

= | et us give the states some names (e.g., A, B, C, ..)
e 00—-A01—-B,10—-C,11 —-D

(7]
i
—
o
=
<
x
1]

State/output table
State Next state S*
variables (Excitation) Outputs Current Next OUtbULS
D2 D1 state, S state, S* P
when x is X
2 Q1 y4 S z
20 0 1 0 1
00 10 10 1 A C C 1
0 1 10 10 1 B C C 1
10 01 11 0 C B D 0
T 1 00 10 1 D A C 1

Example 1

State Machine Analysis, Contd.

= Step 3: Draw a state diagram
* Present the information from the state/output table in a graphical way
« One circle (node) for each state and an arrow (directed arc) for each state transition

State/output table
:
Current Next Outputs N

state, S state, S*

T
X
S : Z 1

(7]
i
—
o
=
<
x
1]

> W O O] o

O O O O
(@D J—
=
S

O O wmw r

=]

module fsm _examplel (
Example 1 input x,
State Machine in Verilog input CLK,
output reg z
)

reg [2:1] D, Q;

// Next-state logic

* i always @ (*) begin
Q1:D1:f1($7Q19Q2):Q1°Q2 : D[1] = ~Q[1] & Q[2];
I
I

Q3 = D2 = fa(z,Q1,Q2) = T+ Qs D[2] = x | ~Q[2];

EXAMPLES

always @ (posedge CLK) begin

\

(// State memory
|

|

| Q <= D;

[

end

\
_ ~N—_——— - ——

——— — — —

AN

always @ (*) begin
z = Q[1] | ~Q[2];

2 =g(2,Q1,Q2) = Q1 + Q2

\

(/ // Output Llogic
|

I

I

\

endmodule
CS-17/3, © EPFL, Spring 2025

~ —_——_————

\

(7]
w
—
o
=
<
>
]

Example 2

State Machine Analysis

» Analyze the state machine

implemented by the circuit
» Step 1: Determine next-state
transition and output functions
Qo = Do = fo(EN,Qo,Q1,Q2) = Qo ® EN
Q1 = D1 = fi(EN,Qo,Q1,Q2) = Q1 ® (QuEN)
Q5 = Dy = f2(EN,Qo,Q1,Q2) = Q2 ® (QoQ1EN)
zi = gi(Qi) = Qi , 0 < i <2
CLK

* denotes next value of the state variable

CS-173, © EPFL, Spring 2025

Next-State Logic

-

ENi

jD IDO

D

e e e -

D1 Q1
L
D2 Q2

<1

30

Example 2

State Machine Analysis, Step 2

State Excitation
variables D2 D1 DO
EN
Q2 Q1 QO 0
a 0=Do=QopDEN
T O 0O O0O]l0 O 010
= QT = D1 = Q1D (QoEN)
X O 0 1 O 0 1 0
Q3 = D2 = Q28 (Qu1 EN) o 1 olo 1 olo
2i =0 ,0<1<2 o 1 110 1 111
1 0O O 1 0O O 1
1 0 1 1 0 1 1
1 1 0 T T 0 T
1 1 1 1 1 1 0

CS-173, © EPFL, Spring 2025

Example 2

State Machine Analysis, Step 2

State/output table
Sftate Excitation Current Next state, Outputs
variables D2 D1 DO state, S S*
EN EN
m Q2 Q1 QO 5 1 000—A S 5 1 z2 z1 20
. 0 0 0]0 0 0|0 0 1 00T—6 A Al BJlo o o
% 0o 0 1]/0 0 1]0 1 0 117 H B B | c |0 0 1
o 1 o0 1T O[O0 1 1 — C C D o 1 O
o 1 10 1T 1|1 0 O D D E 0o 1
1T 0 0|1 O O0O|1T 0 1 E E F 1T 0 O
T 0 1|1 O 1|1 1 O F F G T 0 1
T 1 o1 1 O 1T 1 1 G G H 1T 1 O
T 1 1|11 1 1]0 0 O H H A T 1 1

CS-173, © EPFL, Spring 2025

(7]
w
—
o
=
<
>
]

Example 2

State Machine Analysis, Step 3

Current Next state,

state, S S* Outputs
EN
S - : z2 z1 20
A A B 0O 0 O
B B C 0O 0 1
C C D O 1 O
D D E o 1 1
E E F T 0 O
F F G T 0 1
G G H T 1 0
H H A T 1 1

CS-173, © EPFL, Spring 2025

EN

EN

33

State Machine Analysis

= \What can you tell about the circuit?

= A: The circuit is a 3-bit counter

« If enabled (EN = 1), it counts up in steps of one. Once the max count
is reached (i.e., 111), it returns to the initial value (i.e., 000)

« Otherwise, it keeps the last computed value

It is a Moore state machine (outputs depend only on the state).
As there are three FFs, the FSM has 23 states.

CS-173, © EPFL, Spring 2025

34

module fsm_example2 (

Example 2 input EN,

State Machine in Verilog ;:i:ﬁtctzé [2:0] z
)

reg [2:0] D, Q;

i ——— i —— ———

7" // Next-state logic \
always @ (*) begin

[\
I I
7 Qo = Do =QoD® EN i D[@] = Q[@] ~ EN; i
: Qi = D1 =1 & (QEN) © p[1] = Q[1] ~ (Q[e] & EN); :
S Q3 =D =Q28 (QuEN) | D[2] = Q[2] ~ (Q[1] & Q[@] & EN); |
‘___end <
Veri/og.op.erators: I// // State memory \
& - bitwise AND | always @ (posedge CLK) begin |
| - bitwise OR | Q0 <= D;
~ - bitwise NOT | - |
A - bitwise XOR .___end y

// Output Llogic \
always @ (*) begin |
. I

)

// equivalent to /': z =4
// output [2:0] z \ end

— e o o e e o e e e e e e — — — — — — — — — — —

i =0Q; ,0<i<2 {
|

CS-173, © EPFL, Spring 2025 assign z = Q; endmodule

CS-173, © EPFL, Spring 2025

36

State Machine Synthesis

Much more common scenario in practice

CS-173, © EPFL, Spring 2025

(7]
i
—
o
=
<
x
1]

FSM Design Using an Example

= Consider that we need to design a traffic light controller
« T,, Tg:Signals from the traffic sensors; active when there is traffic
* L, Lg: Signals for controlling traffic lights

Avenue

il

Ta

Lg

<]
L,

Boulevard =T; T —

CS-173, © EPFL, Spring 2025

38

FSM Design Algorithm

= |[dentify FSM inputs and outputs Boulevard E:

= Draw state transition diagram om

= Construct state table
« Select state encodings (binary vectors)
« Rewrite state table with state encodings
« Write logic expressions for next state

= Construct output table
« Select output encodings (binary vectors)
» Write logic expressions for output

= Construct the equivalent logic circuit (drawing, Verilog)

(7]
i
—
o
=
<
x
1]

Avenue

Traffic Light Controller]
Example LA HHHH
Boulevard %TB A Te %

= |[dentify FSM inputs and outputs
« Two one-bit inputs from the traffic sensors
* CLK, system clock
* CLR, synchronous reset for clearing the state memory
« Multiple bits for the outputs (there are three lights: red, yellow, green)

La Traffic Light
T Controller —— La
B ;
CLR — Ls
CLK - i

CS-173, © EPFL, Spring 2025 D e

40

%)
i
—
o
=
<
x
1]

Traffic Light Controller

Example, Contd.

= Draw state transition diagram

CLR

CS-173, © EPFL, Spring 2025

ST

L,: yellow
Lg: red

Recall...

Traffic Light

Controller =7 La

41

Recall...

Traffic Light Controller

Example, Contd.

» Construct state table

CLR
Current State, S Inputs Next State, S* ST

E S Ty T3 S* L,: yellow
s S0 1 X S0 Lg: red

SO 0 X ST

ST X X S2

S2 X 1 S2

S2 X 0 S3

S3 X X SO

X stands for 0/1 (i.e., both options)

CS-173, © EPFL, Spring 2025 42

Traffic Light Controller

Example, Contd.

» Select state encodings

e Four states; hence, two bits
suffice to encode all states

« Example state encoding:

EXAMPLES

State Encoding

SO 00
ST 0
S2 10
S3 11

Note: Choice of encoding impacts implementation;
in practice, we prefer to let tools infer best encoding

CS-173, © EPFL, Spring 2025

Recall...

Current State, S Inputs Next State, S*

S Ta Ty S*
SO 1 X SO
SO 0 X ST

ST X X S2

S2 X 1 S2

S2 X 0 S3

S3 X X SO

X stands for 0/1 (i.e., both options)

43

(7]
i
—
o
=
<
x
1]

Traffic Light Controller

Example, Contd.

» Rewrite state table

Current State, S Inputs Next State, S*
Q1 QO Ta Ty D1 DO
00 1 X 00
00 0 X 01
01 X X 10
10 X 1 10
10 X 0 T
T X X 00

X stands for 0/1 (i.e., both options)
Next-State Logic

Qi =D1=01 Qo+ Q1 Qo= Q& Q1
Qi=Do=Q1 Qo Ta+Q1 Qo Tr

CS-173, © EPFL, Spring 2025

Recall...

Current State, S Inputs Next State, S*

S Ta Ty &

SO 1 X SO

SO 0 X ST
ST X X S2
S2 X 1 S2
S2 X 0 S3
S3 X X SO

X stands for 0/1 (i.e., both options)

State Encoding
SO 00
ST 01
S? 10
S3 11

44

%)
i
—
o
=
<
x
1]

Traffic Light Controller

Example, Contd.

= Construct output table; select output encodings

* Moore FSM: outputs depend%nly on the state
A

CLR

CS-173, © EPFL, Spring 2025

45

(7]
i
—
o
=
<
x
1]

Traffic Light Controller

Example, Contd.

= Construct output table; select output encodings
« Moore FSM: outputs depend only on the state

« Three different outputs, hence two bits required to represent them
« Ly Two bits (Laq, Lag)
 Lg Two bits (Lg,, Lgg)

= For the encoding given in the table: Quiui | Eneseiie
e IfLyisgreen: Ly, =0, Lyg=0; GREEN 00
 If Lgisyellow: Lg; =0, Lgy = 1; YELLOW 01
. oto RED 10

Note: Choice of encoding impacts implementation;

CS-173, © EPFL, Spring 2025 : . . .
e in practice, we prefer to let tools infer best encoding

46

Recall...

Tl'affiC Light COI‘]tI’O"eI‘ State Encoding Output Encoding

Example, Contd. S0 00 GREEN 00

ST 01 YELLOW 01

= Construct output table; 52 10 RED 10
S3 11

write logic expressions

i Current State, S Outputs

% Q1 QO LA1 I—AO LB1 I—BO

- 00 0 0 1 0
01 0 1 1 0
10 1 0 0 0
11 1 0 0 1

Output Logic

L =@ Lp1 = Q1
Lao=Q1 Qo Lpo=Q:1Qo

CS-173, © EPFL, Spring 2025

EXAMPLES

Traffic Light Controller

Example, Contd.

Next-State Logic

Qi =D1=0Q1 Qo+ Q1 Qo=Qo® Q1
Qi=Do=Q1 Qo Ta+Q1 Qo Txs

Output Logic

Lpi=Q
Lpo = Q1Q0

La =1
Lo = Q1 Qo

CS-173, © EPFL, Spring 2025

module traffic light ctrl (
input TA, TB, CLR, CLK,
output reg [1:0] LA, LB
)
reg [1:0] D, Q;

—_t—_—_——,e—,em e, e, e—,e——_ e—_ e —_ — — e —————— —

4 // Next-state logic

always @ (*) begin
D[1] = Q[e] ™ Q[1];
D[0] = (~Q[1] & ~Q[@] & ~TA)
| (Q[1] & ~Q[@] & ~TB);

N end

/ // State memory

always @ (posedge CLK)

begin
if (CLR == 1) Q <= 0;
else Q <= D;

end

d // Output Llogic

always @ (*) begin

LA[1] = Q[1]; LA[®@] = ~Q[1] & Q[@];
LB[1] = ~Q[1]; LB[@®] = Q[1] & Q[@];
- end
“endmodule

—_————

—————— — — —

N

—— ——— — — —

\
~

s

N~ e ———————

—— — —

CS-173, © EPFL, Spring 2025

49

Literature

DIGITAL LOGIC

with Verilog Design

= Chapter 6: Synchronous
Sequential Circuits
= 6.1.1,6.1.2,6.3.6.4.1

CS-173, © EPFL, Spring 2025

Chapter 9: State Machines

J

9.1-9.3

A

-

)|
= SN
BIESIG
PR

L

50

