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Previously

▪ 2-to-2n Binary decoders
• Defined the functionality

• Used Verilog conditional operator to model them

▪ Learned what memories are and how to build them with DFFs
• Two-dimensional arrays of DFFs

• Address port for indexing the row (i.e., data word)
• Used 2-to-2n binary decoder to activate one enable signal per row

• Access protocol: when/how to read and when/how to write

• Modeled memory as a two-dimensional array of DFFs in Verilog

• Learned how to use Verilog parameters to be able to instantiate memories
with various configurations (e.g., number of rows or data word width)
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Let’s Talk About…
Finite state machines
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Learning Outcomes

▪ Discover finite state machines (FSMs)
• Mealy FSMs

• Moore FSMs

▪ Analyze and design finite state machines
• Apply step-by-step algorithms

• Model FSMs in Verilog
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Quick Outline

▪ State Machines
• Mealy FSMs

• Moore FSMs

▪ State Machine Analysis
• State Diagram

• Example 1

• Example 2

▪ State Machine Design
• Algorithm

• Example: Traffic light controller
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State Machines

7CS-173, © EPFL, Spring 2025



8

Combinational vs. Sequential
Recap

▪ Recall: Logic circuits can be classified into two types
• Combinational

• Outputs depend only on the current inputs

• No memory elements, no state

• Sequential
• Outputs depend on the current inputs and the current circuit’s state

• As the state is defined by the past inputs and past states
we can say that the outputs depend on the current and past inputs 
(possibly arbitrarily far back in time)

• Memory elements to keep (hold) states

▪ Practical circuits are a combination of both types
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State Machines
Finite-State Machines

▪ Because circuits containing combinational and sequential logic 
have a state, we call them state machines

▪ States are represented by    -bit binary values
(one memory element per one bit of the state)

• Q: How many states can be represented with     bits?

• A: 

▪ As the number of states is limited (i.e., finite), we call such 
circuits finite state machines (FSMs)
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Finite State Machines

▪ Two types of FSMs exist

▪ Mealy state machines
• Named after George H. Mealy

▪ Moore state machines
• Named after Edward F. Moore

▪ State transitions occur in sync with the clock (e.g., rising edge)
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Finite State 
Machine

Inputs

Clock

Outputs

https://en.wikipedia.org/wiki/George_H._Mealy
https://en.wikipedia.org/wiki/Edward_F._Moore
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Mealy State Machine
Structure

▪ If the outputs depend on the current state and current inputs, 
we have a Mealy state machine

CS-173, © EPFL, Spring 2025

State 
Memory

Clock
MEALY FSM
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current state
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Mealy State Machine
Contd.

▪ The state memory is a set of      flip-flops that store the current state
• All connected to a common clock, causing them to update state once per clock period

▪ The next state is a function of inputs and current state
• Next state = f(current state, input)

▪ The output is a function of the current state and inputs
• Output = g(current state, input)
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Mealy FSM Modeling
In Verilog
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always @ (*)
begin
Snext = …
end

always @(posedge CLK)
begin
S <= Snext;

end

always @ (*)
begin
Z = …

end

X

Clock
MEALY FSM

Snext OutputsS

Next-State Logic
(Combinational)

State memory
(Sequential)

Output Logic
(Combinational)

Inputs

Z

Note: Adjust the sensitivity list of the state memory, as required
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Moore State Machine
Structure
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Next-State 
Logic
f(…)

State 
Memory

Output
Logic
g(…)

Inputs

Clock

current state
Outputs

MOORE FSM

▪ If the outputs depend on the current state only,
we have a Moore state machine

excitation

Next-State 
Logic
f(…)

(next state)
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Moore State Machine
Structure
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▪ The next state is a function of inputs and current state
• Next state = f(current state, input)

▪ The output is a function of the current state only
• Output = g(current state)

▪ Moore state machines are preferred (because there is no combinational 
path connecting inputs to outputs), whenever possible

(next state)
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Moore FSM Modeling
In Verilog
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always @ (*)
begin
Snext = …
end

always @(posedge CLK)
begin
S <= Snext;

end

always @ (*)
begin
Z = …

end

X

Clock
MOORE FSM

Snext OutputsS

Next-State Logic
(Combinational)

State memory
(Sequential)

Output Logic
(Combinational)

Inputs

Z

Note: Adjust the sensitivity list of the state memory, as required
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State Machine Analysis
Analysis of a circuit containing
combinational and sequential logic
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State Machine Analysis
Algorithm

▪ State machine analysis involves three basic steps:
• Step 1: Given a logic circuit, determine the next-state and output

functions f( ) and g( ), respectively

• Step 2: Use f( ) and g( ) to construct a state/output table that 
completely specifies the next state and the output of the circuit 
for every possible combination of current state and inputs

• Step 3 (optional): Draw a state diagram that presents the information
from Step 2 in graphical form

▪ In practice, we more often design state machines than analyze them
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What Are State Diagrams?

▪ Conceptually simplest method 
to describe the behavior of
a sequential circuit is to draw 
a state diagram
• A graph that depicts states

of the circuit as nodes and
transition between states
as directed edges

▪ Example:
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A /

B / C /

D /

1

1



State Diagrams, Contd.

▪ Nodes in a state diagram
• Annotated with the state name

• If Moore FSM, nodes are also 
annotated with the output value

▪ Example:

▪ State names: A, B, C, D

▪ Output values:   (=1) or     (=0)

• / acts as a separator
21CS-173, © EPFL, Spring 2025

A /

B / C /

D /

1

1



State Diagrams, Contd.

▪ Directed edges
in a state diagram
• Annotated with the transition 

(signals) causing the change
of state

• State changes occur only in 
sync with clock

• If Mealy FSM, edges are also 
annotated with the output value

▪ Example:

▪ State names: A, B, C, D

▪ Transitions: 1 (unconditionally) or 
as a function of input x
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A /

B / C /

D /
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Example 1
State Machine Analysis

▪ Analyze the state machine implemented by the circuit below

▪ Which type of FSM is this?
• This is a Moore state machine; outputs depend only on the state
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Example 1
State Machine Analysis, Contd.

▪ Step1: Given a logic circuit, 
determine the next-state and output functions f( ) and g( )

* denotes next value of the state variable (next state)
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Example 1
State Machine Analysis, Contd.
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State 
variables

Input
Next state S*
(Excitation)

Outputs

Q2 Q1 x D2 D1 z

0  0 0 1 0 1

0  1 0 1 0 1

1 0 0 0 1 0

1 1 0 0 0 1

0 0 1 1 0 1

0 1 1 1 0 1

1 0 1 1 1 0

1 1 1 1 0 1

* denotes next value of the state variable (next state)
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Hey, we make our table more compact here!
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State 
variables

Next state S*
(Excitation)

D2 D1
Outputs

Q2 Q1
when x is

z
0 1

0   0 1 0 1 0 1

0   1 1 0 1 0 1

1   0 0 1 1 1 0

1   1 0 0 1 0 1

State 
variables

Input
Next state
(Excitation)

Outputs

Q2 Q1 x D2 D1 z

0 0 0 1 0 1

0 1 0 1 0 1

1 0 0 0 1 0

1 1 0 0 0 1

0 0 1 1 0 1

0 1 1 1 0 1

1 0 1 1 1 0

1 1 1 1 0 1 S
a

m
e

 s
e

q
u

e
n

c
e

 r
e

p
e

a
ti

n
g

Note: As output does not depend on x, we can compact this table to avoid repetitions
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Back to our Example…
State Machine Analysis, Contd.

▪ Step 2: Construct a state/output table

▪ Let us give the states some names (e.g., A, B, C, …)
• 00 → A, 01 → B, 10 → C, 11 → D

State/output table

Current 
state, S

Next
state, S*

Outputs

S
x

z
0 1

A C C 1

B C C 1

C B D 0

D A C 1

State 
variables

Next state S*
(Excitation)

D2 D1
Outputs

Q2 Q1
when x is

z
0 1

0   0 1 0 1 0 1

0   1 1 0 1 0 1

1   0 0 1 1 1 0

1   1 0 0 1 0 1
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Example 1
State Machine Analysis, Contd.

▪ Step 3: Draw a state diagram
• Present the information from  the state/output table in a graphical way

• One circle (node) for each state and an arrow (directed arc) for each state transition

1
A /

B /

D /

C /
1

State/output table

Current 
state, S

Next
state, S*

Outputs

S
x

z
0 1

A C C 1

B C C 1

C B D 0

D A C 1
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Example 1
State Machine in Verilog
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module fsm_example1 (
input x,
input CLK,
output reg z
);

reg [2:1] D, Q;

// Next-state logic
always @ (*) begin
D[1] = ~Q[1] & Q[2];
D[2] = x | ~Q[2];

end
// State memory
always @ (posedge CLK) begin

Q <= D;
end
// Output logic
always @ (*) begin
z = Q[1] | ~Q[2];

end
endmodule
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Example 2
State Machine Analysis
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▪ Analyze the state machine 
implemented by the circuit

▪ Step 1: Determine next-state
transition and output functions

* denotes next value of the state variable

EN

CLK

Q0

Q1

Q2

Next-State Logic

D0

D1

D2

Output Logic
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Example 2
State Machine Analysis, Step 2
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State 
variables

Excitation
D2 D1 D0

Q2 Q1 Q0
EN

0 1

0 0 0 0 0 0 0 0 1

0 0 1 0 0 1 0 1 0

0 1 0 0 1 0 0 1 1

0 1 1 0 1 1 1 0 0

1 0 0 1 0 0 1 0 1

1 0 1 1 0 1 1 1 0

1 1 0 1 1 0 1 1 1

1 1 1 1 1 1 0 0 0
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Example 2
State Machine Analysis, Step 2
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State 
variables

Excitation
D2 D1 D0

Q2 Q1 Q0
EN

0 1

0 0 0 0 0 0 0 0 1

0 0 1 0 0 1 0 1 0

0 1 0 0 1 0 0 1 1

0 1 1 0 1 1 1 0 0

1 0 0 1 0 0 1 0 1

1 0 1 1 0 1 1 1 0

1 1 0 1 1 0 1 1 1

1 1 1 1 1 1 0 0 0

000→A
001→B
…
111→H

Current 
state, S

Next state, 
S*

Outputs

S
EN

z2 z1 z0
0 1

A A B 0 0 0

B B C 0 0 1

C C D 0 1 0

D D E 0 1 1

E E F 1 0 0

F F G 1 0 1

G G H 1 1 0

H H A 1 1 1
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Example 2
State Machine Analysis, Step 3
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Current 
state, S

Next state, 
S*

Outputs

S
EN

z2 z1 z0
0 1

A A B 0 0 0

B B C 0 0 1

C C D 0 1 0

D D E 0 1 1

E E F 1 0 0

F F G 1 0 1

G G H 1 1 0

H H A 1 1 1

A /

B /

C /

E /

F /

H /

D /

G /
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State Machine Analysis

▪ What can you tell about the circuit?

▪ A: The circuit is a 3-bit counter
• If enabled (EN = 1), it counts up in steps of one. Once the max count 

is reached (i.e., 111), it returns to the initial value (i.e., 000)

• Otherwise, it keeps the last computed value

It is a Moore state machine (outputs depend only on the state). 
As there are three FFs, the FSM has 23 states.
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Example 2
State Machine in Verilog
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module fsm_example2 (
input EN,
input CLK,
output reg [2:0] z
);

reg [2:0] D, Q;

// Next-state logic
always @ (*) begin
D[0] = Q[0] ^ EN;
D[1] = Q[1] ^ (Q[0] & EN);
D[2] = Q[2] ^ (Q[1] & Q[0] & EN);

end
// State memory
always @ (posedge CLK) begin

Q <= D;
end
// Output logic
always @ (*) begin
z = Q;

end
endmodule

Verilog operators:
& - bitwise AND

| - bitwise OR
~ - bitwise NOT
^ - bitwise XOR

// equivalent to
// output [2:0] z
assign z = Q;
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State Machine Synthesis
Much more common scenario in practice
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FSM Design Using an Example

▪ Consider that we need to design a traffic light controller
• TA, TB : Signals from the traffic sensors; active when there is traffic

• LA, LB: Signals for controlling traffic lights

CS-173, © EPFL, Spring 2025

Boulevard

Avenue

TA

TA

TB TB

LA

LA

LB

LB
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FSM Design Algorithm

▪ Identify FSM inputs and outputs

▪ Draw state transition diagram

▪ Construct state table
• Select state encodings (binary vectors)

• Rewrite state table with state encodings

• Write logic expressions for next state

▪ Construct output table
• Select output encodings (binary vectors)

• Write logic expressions for output

▪ Construct the equivalent logic circuit (drawing, Verilog)
CS-173, © EPFL, Spring 2025

Boulevard
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Traffic Light Controller
Example

▪ Identify FSM inputs and outputs
• Two one-bit inputs from the traffic sensors

• CLK, system clock

• CLR, synchronous reset for clearing the state memory

• Multiple bits for the outputs (there are three lights: red, yellow, green)
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Traffic Light 
Controller

Boulevard

Avenue

TA

TA

TB TB

LA

LA

LB

LB
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Traffic Light Controller
Example, Contd.

▪ Draw state transition diagram

CS-173, © EPFL, Spring 2025

Recall…

S0
LA: green

LB: red

S1

LA: yellow
LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Traffic Light 
Controller
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Traffic Light Controller
Example, Contd.

▪ Construct state table

CS-173, © EPFL, Spring 2025

Current State, S Inputs Next State, S*

S TA TB S*

S0 1 X S0

S0 0 X S1

S1 X X S2

S2 X 1 S2

S2 X 0 S3

S3 X X S0

X stands for 0/1 (i.e., both options)

Recall…

42

S0 S1

S2S3

LA: green
LB: red

LA: yellow
LB: red

LA: red
LB: green

LA: red
LB: yellow
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Traffic Light Controller
Example, Contd.

▪ Select state encodings
• Four states; hence, two bits

suffice to encode all states

• Example state encoding:

CS-173, © EPFL, Spring 2025

State Encoding

S0 00

S1 01

S2 10

S3 11

Recall…

Note: Choice of encoding impacts implementation;
in practice, we prefer to let tools infer best encoding
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Current State, S Inputs Next State, S*

S TA TB S*

S0 1 X S0

S0 0 X S1

S1 X X S2

S2 X 1 S2

S2 X 0 S3

S3 X X S0

X stands for 0/1 (i.e., both options)
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Traffic Light Controller
Example, Contd.

▪ Rewrite state table
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Current State, S Inputs Next State, S*

Q1 Q0 TA TB D1 D0

0  0 1 X 0  0

0  0 0 X 0  1

0  1 X X 1  0

1  0 X 1 1  0

1  0 X 0 1  1

1  1 X X 0  0

X stands for 0/1 (i.e., both options)

State Encoding

S0 00

S1 01

S2 10

S3 11

Next-State Logic

Recall…
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Current State, S Inputs Next State, S*

S TA TB S*

S0 1 X S0

S0 0 X S1

S1 X X S2

S2 X 1 S2

S2 X 0 S3

S3 X X S0

X stands for 0/1 (i.e., both options)
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Traffic Light Controller
Example, Contd.

▪ Construct output table; select output encodings
• Moore FSM: outputs depend only on the state
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S0 S1

S2S3

LA: green
LB: red

LA: yellow
LB: red

LA: red
LB: green

LA: red
LB: yellow
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Traffic Light Controller
Example, Contd.

▪ Construct output table; select output encodings
• Moore FSM: outputs depend only on the state

• Three different outputs, hence two bits required to represent them
• LA: Two bits (LA1, LA0)

• LB: Two bits (LB1, LB0)

▪ For the encoding given in the table:
• If LA is green: LA1 = 0, LA0 = 0;

• If LB is yellow: LB1 = 0, LB0 = 1;

• etc.
CS-173, © EPFL, Spring 2025

Output Encoding

GREEN 00

YELLOW 01

RED 10

Note: Choice of encoding impacts implementation;
in practice, we prefer to let tools infer best encoding
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▪ Construct output table; 
write logic expressions
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Traffic Light Controller
Example, Contd.
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Output Encoding

GREEN 00

YELLOW 01

RED 10

Current State, S Outputs

Q1 Q0 LA1 LA0 LB1 LB0

0  0 0 0 1 0

0  1 0 1 1 0

1  0 1 0 0 0

1  1 1 0 0 1

State Encoding

S0 00

S1 01

S2 10

S3 11

Output Logic

Recall…

S0 S1

S2S3

LA: green
LB: red

LA: yellow
LB: red

LA: red
LB: green

LA: red
LB: yellow
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Traffic Light Controller
Example, Contd.
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module traffic_light_ctrl (
input TA, TB, CLR, CLK,
output reg [1:0] LA, LB
);  
reg [1:0] D, Q;
// Next-state logic
always @ (*) begin
D[1] = Q[0] ^ Q[1];
D[0] = (~Q[1] & ~Q[0] & ~TA)

| (Q[1] & ~Q[0] & ~TB);
end
// State memory
always @ (posedge CLK)
begin
if (CLR == 1) Q <= 0;
else Q <= D;

end
// Output logic
always @ (*) begin
LA[1] = Q[1]; LA[0] = ~Q[1] & Q[0];
LB[1] = ~Q[1]; LB[0] = Q[1] & Q[0];

end
endmodule

Next-State Logic

Output Logic

48
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Literature
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▪ Chapter 6: Synchronous 
Sequential Circuits
▪ 6.1.1, 6.1.2, 6.3. 6.4.1

▪ Chapter 9: State Machines
▪ 9.1-9.3


